
 1

Data Synchronization Issues in GALS SoCs

Rostislav (Reuven) Dobkin1, Ran Ginosar1 and Christos P. Sotiriou2
1VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel

2ICS-FORTH, Crete, Greece

Abstract: Locally generated, arbitrated clocks for GALS SoCs [1] face the risk of synchronization
failures if clock delays are not accounted for. The problem is analyzed based on clock delays, cycle
times, and complexity of the asynchronous port controllers. A number of methods are presented. In
some cases, it is sufficient to extract all the delays and verify whether the system is susceptible to
metastability. In other cases, when high data bandwidth is not required, asynchronous synchronizers or
matched-delay asynchronous ports may be employed. Arbitrated clocks may be traded off for locally
delayed input and output ports, facilitating high data rates. The latter circuits have been simulated, to
verify their performance.

Index Terms: Globally Asynchronous Locally Synchronous, clocks, synchronization failures.

1. Introduction

 As systems on chip (SoC) become larger and faster, it is becoming increasingly difficult to distribute a
single synchronous clock to the entire chip [2]. To overcome this problem, a Globally Asynchronous,
Locally Synchronous (GALS) architecture has been proposed [3]. The ability to run at different
frequencies (and different supply voltages) also contributes to power savings. Other reasons to adopt
GALS methodology include the need to interface with multiple external clock domains. The principal
challenge of GALS architectures is the need to synchronize data as it crosses different clock domains
inside the SoC. Two principal clocking and synchronization methods have been proposed to address
this issue. Clock synchronization employs handshake clocks that are stopped based on inputs from
other domains [4]. Arbitrated locally generated clocks have been proposed in [1] [5] [6] [7]. According to
this methodology, a local ring-oscillator based clock generator in each synchronous “island”
incorporates a set of MUTEX arbiters that stop the clock temporarily when new input data arrive. In
this paper, we analyze the effect that the delays through the clock distribution networks might have on
synchronization. We show that such delays, which were unaccounted for in previous publications, may
lead to failures. We also present a variety of solutions to this problem.

Standard GALS clocking and synchronization is reviewed in Section 2, and their potential for failure is
analyzed in Section 3. Proposed solutions are presented in Section 4 and the simulations of some of
them are discussed in Section 5.

2. Synchronization in Locally-Clocked GALS SoC

Clocking and input synchronization circuits for locally-clocked SoC proposed in the literature [1] [5] [6]
[7] are mostly variations of the circuit in Figure 1. Note the five different components of the clock,
namely A, B, X, Y and Z.

A locally generated stoppable clock is employed in each Locally Synchronous Island. Input and output
to other islands are controlled by asynchronous handshake via special ports. The clock generator
comprises a ring oscillator with an adjustable delay line [8] and an arbitration circuit. Each incoming
request for a clock pause (R) is connected to a MUTEX that decides whether to grant the request (AK)
or to permit the next clock pulse. The next clock pulse will take place only if all MUTEXes allow it

 For ease of reading the paper, it has been formatted in a single column and with large graphics, and
hence it is longer than the upper bound of 10 pages. However, once formatted for the conference and
once the figures are reduced, the paper will be made shorter than 10 pages, as required.

 2

(node B high). Thanks to the C-element, local clock X may be stretched (X+ is blocked) whenever at
least one of the incoming R requests is granted (B is low) while A is rising, and stretching will last until
all granted R requests are released (and B goes high). The process is demonstrated in Figure 2.

AK
C

Adjustable Delay Line ~ T/2

Clock Reset

REG

Local Clock Generator

Local C
lock

Port
REQ
ACK

Locally
Synchronous

IslandDATA

XFER

M
U

TE
X

M
U

TE
X

M
U

TE
X

R

D
el

ay
ed

C
lo

ck

A

B

Z

X

Y

INPUT

Figure 1: Stoppable Clock Generation [1]

R

AK

Local Clock X

DATA D0 D1

A

B

Z

NOR DELAY DNOR

DELAY LINE DL

C-ELEMENT DELAY DCE
MUTEX+AND DELAY DMA

STRETCH

T/2

MUTEX+AND DELAY DMA

STRETCH WINDOW α

δ ASYNC CONTROL DELAY DAC

Figure 2: Stoppable Clock Generation – Wave Diagram

 3

(20)

Z+

A+

B+ X+

R+ R-

(1)

(2)

(3)

(4) (6)

(15)

(19
)

DL

DMA DNOR

DCE

δ

DAC

AK+

(14)

D AK-(16) (17) (18)

Z-
DCE

ξ

Y+

(5
)

∆CLK

(23)
(13)

A-

X-

(7)

(8)

(9)

(10)

DL

DMA

DCE

DCE

Y-

(1
1)

∆CLK

B-

(12)

(21)

(22)

DMA

Figure 3: Timed STG of the local stoppable clock of Figure 1

R+ is recognized only when Z=0. Clock cycle stretching occurs when R+ arrives during a stretch
window, α, towards the end of the low phase of Clock Z. If R+ arrives outside the stretch window, port
handshake is over in time (B+ precedes A+), causing no stretch. Once a stretch is started, its maximal
length is α. This process can also be described with a timed STG (Figure 3). We add a line tagged δ for
the time from Z– to R+, and observe that certain timing of R+ may make the δ arc part of the critical
path, stretching the clock, as follows. Let δ'∈[0, T) be the time between Z+ and R+. Since R+ is
ignored when Z=1, we define δ as the effective time between Z– and a port request, as follows:

' , '

2 2

0, 0 '
2

T T T

T

δ δ

δ

δ


− < <

= 
 ≤ ≤


 (1)

Note that 0≤δ<T/2. From Figure 3 it can be observed that a stretch occurs if path
(6)�(23)�(15)�(16)�(17)�(19)�(21)�(13)�(4) takes longer than a clock cycle:

 AC MA CE NORD D D D Tδ + + + + > (2)

where the various delays are defined in Figure 2. Stated otherwise, the stretch condition is:

 ()
2AC MA CE NOR
TT D D D D δ− + + + ≤ < (3)

Subtracting the lower bound from the upper bound, we obtain α, the size of the stretch window:

 ()
2AC MA CE NOR
TD D D Dα = + + + − (4)

If the circuit's clock cycle is relatively long, then the clock will never be stretched and parameter α of
Eq. (4) will assume a negative value. For instance, if each of the constant delays in Eq. (4) were 1 ns,
operating at slower than 125MHz will guarantee no clock stretching.

 4

3. Synchronization Failures in GALS Systems

The approach described in Section 2 disregards the delay ∆CLK along the clock tree (from node X to Y),
thus potentially causing metastability events in the sampling REG of the Locally Synchronous Island
(Figure 1). A failure scenario is depicted in Figure 4.

R

AK

Local Clock X

DATA D0 D1

A

B

Z

NOR DELAY DNOR

DELAY LINE DL

C-ELEMENT DELAY DCE
MUTEX+AND DELAY DMA

STRETCH

T/2

MUTEX+AND DELAY DMA

STRETCH WINDOW α

ASYNC CONTROL
DELAY DAC

δ

Y

∆CLK

CONFLICT
ξ

Figure 4: Conflict Example

Let’s assume that such a request comes δ after Z– and is granted by the MUTEX. Uncorrelated with the
input handshake, the delayed Clock Y may rise simultaneously with the asynchronous data latching in
the Port. The conflict may cause metastability in the input REG of the Synchronous Island. Note that,
even though Figure 4 presents the conflict during a stretched cycle, the conflict may happen also when
no stretch of the clock occurs, since these two events are not correlated.

In addition to the main problem of metastability, this approach suffers from two other drawbacks:
pausing the local clock slows down the entire Synchronous Island, and the slowdown may be
exacerbated with multi-port GALS modules, where the probability of pausing the clock is higher.

Starting from X+, the conflict occurs when:

 CLK NORDδ ξ∆ = + + (5)

namely, when the delay along arcs (6)�(23)�(15)�(16) matches the delay along arc (5) in Figure 3.
The conflict occurs when Y+ happens inside a “danger window” W (setup+hold time) around

NORD k Tδ ξ+ + + ⋅ , where k is an integer (k>0 accounts for clock delays longer than T). The δ
statistics is not known, but we believe that the probability of distortion grows with the number of
GALS module ports. Figure 5 emphasizes graphically the combinations of ∆CLK and δ that lead to
conflicts. Note that for some values of ∆CLK, independent of δ, no conflict can happen (regions S in
Figure 5). Alternative solutions that avoid such conflicts are described in Section 4.

 5

T/2 T 3T/2 2T 5T/2 ∆CLK

T/2

 δ
Conflict zones

 ξ+DNOR

W

0

S S

Figure 5: Conflict Zones

Clock tree delays depend on both technology and architecture. Clock tree balancing becomes
increasingly difficult for high-performance large SoC designs, incurring higher clock tree delays. For
instance, in a 0.18µm technology, a typical clock frequency achievable with standard EDA tools and
standard libraries is 100–500MHz (T=2–10ns), while typical clock delays are 1–2ns, depending on
module size (some examples are presented in Table 1). Large SoCs, with tens of modules, may require
much longer clock delays, approaching T. With faster technologies and larger chips, ∆CLK > T will be a
common case if a single global synchronous clock is attempted for the entire SoC. Thus, while δ∈[0,
T/2), the range of the clock tree delay is not limited by T.

Design Clock Frequency F Clock Period T Clock Skew Clock Tree Delay

DLX-SYNC (FF) 278 MHz 3.60 ns 60 ps 530 ps (15% of T)

DES (FF) 540 MHz 1.85 ns 180 ps 1.168 ns (64% of T)

AES (Opencores) 350 MHz 2.85 ns 165 ps 1.111 ns (39% of T)

MEM Contr. (OC) 200 MHz 5 ns 126 ps 1.014 ns (20% of T)

[2 clocks] 100 MHz 10 ns 137 ps 1.016 ns (10% of T)

Table 1: Clock Tree Delays – Implementation Examples

4. Metastability-Free GALS Clocking

4.1. Limited Delay Clock Tree

When ∆CLK < T, it may be possible to verify that a conflict will never occur. This is performed by
timing analysis of the physical design and verifying that:

 6

2CLK NOR H CLK NOR SU
TD T D Tξ ξ∆ < + − ∪ ∆ > + + + (6)

TSU and TH are the set-up and hold times of the DFF, respectively. When either rule holds, Y+ will
occur only inside the first S region (Figure 5 and Figure 6). The upper bound results from the δ=0 case
and the lower bound from the δ=T/2 case. Both cases relate to the (6)�(23)�(15)�(16) path in Figure
3. Note that the relation between ξ and the clock cycle varies depending on the clock rate and the
technology

Local Clock, X

Z (not X)

NOR Delay, DNOR
T/2

ξ+TSU ξ-TH

Conflict
ZoneS

0<∆CLK<DNOR+ξ-TH,δ=0

DNOR+ξ−ΤSU+T/2<∆CLK<T,δ=T/2

S

Figure 6: Hazard / No Hazard Windows Example

This solution suffers from a number of disadvantages. First, it must be verified manually after each
layout iteration and clock tree design; the solution is not scalable and it may be sensitive to thermal and
power supply voltage changes (different changes in ξ, TSU, TH and DNOR). In addition, ξ is not easy to
determine accurately.

4.2. Long Delay Clock Tree

We can generalize the “limited delay clock tree” solution for long delay clock trees having ∆CLK>T as
follows. The port access is allowed only during the S intervals (Figure 5 and Figure 6). To prevent
metastability, the following inequality must be verified:

(1)
2

 0,1,2,3...

CLK NOR H

NOR SU CLK NOR H

D T
TD T k T D T k T

Where k

ξ

ξ ξ

∆ < + − ∪

+ + + + ⋅ < ∆ < + − + + ⋅

=

 (7)

The pros and cons of this approach are similar to the previous one.

4.3. Asynchronous Synchronizer

GALS modules may also avoid clock arbitration and employ standard asynchronous synchronizers
(Figure 7). The resolving time of the synchronizer should meet MTBF requirements; in Figure 7 we
assume that one clock cycle provides sufficient time for metastability resolution. No clock delay
verification is requited, but the interface data rate is affected drastically (data can not be transferred
every cycle).

Assuming mesochronous operation (the same clock frequencies at the transmitter and receiver), the
minimal data cycle time (REQ+ � REQ+) takes seven clock cycles in the worst case (REQ+ happens
immediately following CLK+ and the transmitter and receiver clocks are in phase), as shown in Figure
8. This data cycle can be reduced when the clocks are out of phase (five clock cycles), or by employing
a two-phase protocol (down to three clock cycles).

 7

REG

CLK

Locally Synchronous Island

REQ ENABLE

ACK

DATAINPUT

RESET

Figure 7: GALS Synchronization with Synchronizer

CLK
REQ

ACK

ENABLE
DATA d0 d1

DATA CYCLE TIME

Figure 8: Data Cycle Time

4.4. Matched Delay Port Control

The metastability problem can be solved by inserting delay lines into the circuit of Figure 1, matching
the clock-tree delay ∆CLK, as shown in Figure 9. The use of this matched delay may cause longer clock
stretching, as demonstrated in Figure 10. In the worst case the stretch is additionally expanded by ∆CLK.
Note that the stretch window α is also expanded to α’ (up to T/2):

,

2'
,

2 2

CLK CLK

CLK

T

T T

α α

α

α


+ ∆ ∆ ≤ −

= 
 ∆ > −


 (8)

This is a “slow” architecture: In designs with high clock rates and long clock delays, the clock stretch
will happen each handshake, since in this case α�T/2. In addition, this approach suffers from the same
disadvantages as the “limited delay clock tree” above.

 8

A
K

C

Adjustable Delay Line

Clock Reset

REG

Local Clock Generator

Local C
lock

Port
REQ
ACK

Locally
Synchronous

IslandDATA

XFER

M
U

TE
X

M
U

TE
X

M
U

TE
X

R

D
el

ay
ed

C
lo

ck

A

B

Z

X

Y

INPUT

Matched
Clock-Tree
Delay, ∆CLK

∆CLK∆CLK

Figure 9: Stoppable Clock Generation with Matched Clock-Tree Delays

R

AK

Local Clock X

DATA

A

B

Z

NOR DELAY DNOR

DELAY LINE DL

C-ELEMENT DELAY DCE
MUTEX+AND DELAY DMA

STRETCH

T/2

MUTEX+AND DELAY DMA

STRETCH WINDOW α

ASYNC CONTROL
DELAY DAC

δ

Y

∆CLK

D0 D1

ξ

No
ConflictMUTEX DELAY

∆∆∆∆CLK

Figure 10: Matched Delay Port Control – Wave Diagram

 9

4.5. Locally Delayed Latching

The following approach eliminates the arbitrated clock (similar to using the asynchronous
synchronizer, Section 4.3), and instead synchronizes incoming data by means of locally delayed
sampling. The asynchronous controller of the input port (Figure 11) controls both the input latch and
Y1, the clock to the first sampling register; Y, the clock to the rest of the module, is uninterrupted.
Various modes of operation are demonstrated in Figure 12.

CLOCK
LEAVES

LATCH DATA REG2REG1

ACK

CL
DL

REQ
CONTROL

YY1L

Y

Figure 11: Locally Delayed Latching Conceptual Circuit

Y

REQ

ACK

L

Y1

DATA Data0 Data1

No Conflict Conflict
(Port Wins)

Data2 Data3

Conflict
(Clock Wins)

No Conflict
(Reduced Cycle)

Data4

dCTRL
Delayed Clock

Worst case = dCTRL

Delayed Request
Worst Case = T/2

Delayed Clock

Figure 12: GALS Port Synchronization Technique – Wave Diagram

In this method the clock to the entire locally synchronous island is never stopped. The only measure
available is to delay Y1+ when a conflict is imminent. Y1– is unaffected, and only the high-phase is
shortened. A port request is treated only during the low-phase of Y, latching the incoming data (L+)
and delaying Y1+ when needed. The conflicts between Y+ and REQ+ are resolved by a MUTEX

 10

inside the control. A number of such asynchronous controllers for generating L and Y1 are presented in
the following sections.

The main issues in this approach are the latency incurred by the asynchronous control, DCTRL, and the
MUTEX resolution latency. We define a minimally allowed high-phase time Min

HPT (typically about
three FO4 inverter gate delays). In addition, we define the maximal time that the MUTEX require to
resolve metastability, MUTEX

MetastabT . Then we require that

2

2

− − >

⇔

< − −

MUTEX Min
CTRL Metastab HP

Min MUTEX
CTRL HP Metastab

T D T T

TD T T

 (9)

In order to prevent metastability in REG2, the following should be satisfied (DL is the latency of the
combinational logic between REG1 and REG2):

+ < − −

⇔

< − − −

MUTEX
L H CTRL Metastab

MUTEX
L H CTRL Metastab

D T T D T

D T T D T
 (10)

The MUTEX metastability can be tolerated if the clock period is long enough to allow for the
resolution of any metastability as well as propagation through the logic that lies in the path to the next
register.

Using a standard formula for MTBF [9] and operating at 200MHz with 0.13µm technology (τ=30ps
and W=60ps), preserving one quarter of the clock cycle for MUTEX resolution, we obtain MTBF of
about 3,000 years. With a 0.35µm technology (τ=100ps, W=200ps and FC=65MHz, as used for the
simulations in Section 5), the MTBF grows to 10,000 years. For faster operation rate (e.g. 400 MHz at
0.13µm technology) more complicated circuits are required, preserving up to T/2 for MUTEX
resolution rather than T/4.

Preserving one quarter of the clock cycle for MUTEX resolution, Eqs. (9), (10) are updated as follows:

T where = 42

4

< − −

⇒ < −

Min MUTEX MUTEX
CTRL HP Metastab Metastab

Min
CTRL HP

TD T T T

TD T
 (11)

And the logic delay requirement, DL, is modified as follows:

 where 4

3
4

< − − − =

⋅
⇒ < − −

MUTEX MUTEX
L H CTRL Metastab Metastab

L H CTRL

TD T T D T T

TD T D
 (12)

DCTRL contains additional buffering delays when wide data path is required. These constraints are
verified in Section 5 for all of the following implementations.

4.5.1. Decoupled Input Port

Figure 13 shows an implementation of Figure 11. Without a conflict, Y1+ is either not delayed or
delayed by less than DCTRL. R2+ is granted only during the low-phase Y. The MUTEX arbitrates any
conflict between R2+ and Y+. When R2+ wins over Y+, the asynchronous controller is granted (R3+).

 11

The controller employs an asymmetric matched delay Do�Di to open the latch and then close it again
(L+�L–). After R2–, Y1+ triggers REG1, leading to a shortened cycle in the combinational logic
following REG1 (the cycle is shortened by DCTRL). If the clock wins over R2+, R3+ happens only half
a cycle later, after Y–. The STG of the Decoupled Input Port control is shown in Figure 14.

CLOCK LEAVES

LATCH

Input
Async.

Ctrl

DATA REG2REG1

Ack Do Latch
Matched

Delay

L
A

Di

MUTEX

R1

dL

Req

R2 R3

YY1L

Y

Figure 13: GALS Module Decoupled Input Port

R2+

R2-

R3+

R3-

L+ Do+

Di+L-

Do-

Di-

Data
Early

R1+

R1-

A+

A-

Input Port
Local Clock

Release

Controller delay, DCTRL

Figure 14: GALS Decoupled Input Port Asynchronous Control STG

The controller delay is measured along the red-dashed path. The path is contained entirely inside the
input port of the synchronous island, thus we ensure that the clock cycle reduction depends solely on

 12

the input port control logic (and it does not depend on the logic and clock of the transmitter module).
The MUTEX output Y1 should be buffered when wide data path is required. In this case, the additional
latency must be taken into account. The latency of the controller is verified in Section 5.

4.5.2. Decoupled Output Port

The transmitter circuit is shown in Figure 15. The internal acknowledge (A1) is decoupled from the
external asynchronous handshake.

DATADATA

Req
REG

Data
Out

REG

Output
Async.

Ctrl

R1

A1
Ack

REG1
Ack

REG2 DL

MUTEX

ROUT

AKIN

CLOCK LEAVES

R2

A2

Output PortSynchronous
Island

A3

A4

Y1

Y
Y

Figure 15: GALS Module Decoupled Output Port

At the beginning, the synchronous island posts the data and initiates the internal request (R1+), which
is passed directly to the external interface (R2+). When the acknowledgement is received (A2+), it is
passed to the MUTEX (A3+) and in parallel the external request R2 is released (R2–). The MUTEX
resolves any conflict between A3+ and the local clock Y. When A4+ wins over Y+, A1 is set. The
design assumes that the controller delay [R1– � A1–] is much less than the clock period, which is very
realistic. The STG of the Decoupled Output Port control is shown in Figure 16.

 13

R1+

R1-

A1+

A1-

R2+

R2-

A2+

A2-

A3+

A3-

A4+

A4-

Figure 16: GALS Decoupled Output Port Asynchronous Control STG

The controller latency of the Decoupled Output Port control, OUT
CTRLd , should be verified according to

Eqs. (11) and (12). In this case:

 [4 1 3]OUT
CTRLd D A A A= + → +→ − (13)

The latency of the controller is verified in Section 5.

4.5.3. A Simpler Input Port

The following architecture simplifies the Receiver side, eliminating the asynchronous controller from
the Input Port.

CLOCK LEAVES

LATCHDATA REG2REG1

ACK
DLATCH

MUTEX

DL

REQ Y

YY1L

Figure 17: Simple Input Port

The receiver delay DCTRL, now depends on the external delays of the transmitter:

 14

 (ACK REQ)CTRL LATCH TRANSMITTERD D D= + +→ − (14)

The Latch Matched Delay (Figure 17) could have been is reduced from DLATCH value to DLATCH-
DTRANSMITTER, but DTRANSMITTER is unknown a-priori, and therefore it is better to set the Latch Matched
Delay to DLATCH. This simple input port is compatible with the output port of Section 4.5.2. The latency
of this constellation (Simple Input Port with the Decoupled Output Port) is also verified in Section 5.

5. Simulations

The circuits of Section 4.5 were synthesized using Petrify, converted to VHDL, synthesized by the
Synopsis Design Compiler using 0.35µm CMOS libraries, and verified by gate level simulations with
wire-load model delays (SDF). Table 2 lists the results for the three controllers.

These results are based on data bus width of 16 bits. In general, we assume a clock cycle of 160 FO4
inverter delays in standard ASIC [10]. One quarter cycle is preserved for metastability resolution and
another quarter cycle (40 inverter delays) are dedicated to the delay of the asynchronous controller and
for high-phase generation. Let’s assume that the controller consumes about 25 inverter delays out of
the said 40 in the second quarter of the cycle. This leaves 15 gate delays for generating the high phase
of the clock. Our 0.35µm library specifies 0.361=

Min
HPT ns , namely about 3 inverter delays. Thus,

4

0.361 1.8 0.12 15

< −

⇔

< = ×

Min
HP Ctrl

TT d

ns ns ns

as required by Eq. (11).

Circuit Critical Path Latency
(0.35µm)

Num. of
FO4

inverter
delays

Decoupled Input Port R3+�Do+�Di+�L–�R2– 3.132 ns 24

Decoupled Output Port A4+�A1+�A3– 1.811 ns 13

Simple Input Port with
Decoupled Output Port Latch Delay�A2+�R2– 2.139 ns 14

Table 2: Controllers Delays

6. Conclusions

Previously proposed locally generated, arbitrated clocks for GALS SoCs [1] [5] [6] [7] face the risk of
synchronization failures if clock delays are not accounted for. The problem has been analyzed based on
clock delays, cycle time, and complexity of the asynchronous port controllers. A few methods have
been presented. In some cases, it is sufficient to extract all the delays and verify whether the system is
susceptible to metastability. In other cases, when high data bandwidth is not required, asynchronous
synchronizers or matched-delay asynchronous ports may be employed. Arbitrated clocks may be traded
off for locally delayed input and output ports, facilitating high data rates. The latter circuits have been
simulated, to verify their performance.

 15

References
[1] Simon Moore, George Taylor, Robert Mullins, Peter Robinson, "Point to Point GALS

Interconnect", Proc. Of ASYNC'02, Manchester, UK, April 2002.
[2] E. G. Friedman, "Clock Distribution Networks in Synchronous Digital Integrated Circuits,"

Proc. of the IEEE, vol. 89, pp. 665-692, 2001.
[3] D. M. Chapiro, "Globally-Asynchronous Locally-Synchronous Systems," Stanford

University, 1984.
[4] J. Kessels, A. Peeters, P. Wielage, and S.-J. Kim, "Clock Synchronization through

Handshake Signalling," in Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 2002, pp. 59--68.

[5] Stephan Oetiker, Frank K. Gürkaynak, Thomas Villiger, Hubert Kaeslin, Norbert Felber,
Wolfgang Fichtner, “Design Flow for a 3-Million Transistor GALS Test Chip,” Integrated
Systems Laboratory, ETH Zurich, ACiD 27, January 2003.

[6] Thomas Villiger, Hubert Kaeslin, Frank K. Gürkaynak, Stephan Oetiker, Wolfgang
Fichtner, “Self-Timed Ring for Globally-Asynchronous Locally-Synchronous Systems,”
Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems
(ASYNC’03), pp. 141-150.

[7] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner, "Practical Design of Globally-
Asynchrounous Locally-Synchronous Systems," 6th International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Eilat, Israel, April 2000, pp.
52-61.

[8] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins, and P. Robinson, "Self-
Calibrating Clocks for Globally Asynchronous Locally Synchronous Systems," in Proc.
International Conf. Computer Design (ICCD), 2000.

[9] C. Dike and E. Burton, "Miller and Noise Effects in a Synchronizing Flip-flop," IEEE
Journal of Solid-State Circuits, 34(6), pp. 849-855, 1999.

[10] International Technology Roadmap for Semiconductors (ITRS), 2001.

