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We present GP-SIMD, a novel hybrid general purpose SIMD computer architecture that resolves the issue 

of synchronization by in-memory computing, through combining data storage and massively parallel 

processing. The GP-SIMD’s arithmetic, logic and associative characteristics and its intercommunication 

network are discussed. GP-SIMD employs modified SRAM storage cells. An analytic performance model of 

the GP-SIMD architecture is presented, comparing it to Associative Processor and to conventional SIMD 

architectures. Cycle-accurate simulation supports the analytical comparison. Assuming a moderate die area, 

GP-SIMD architecture outperforms both the Associative Processor and the SIMD co-processor architectures 

by almost an order of magnitude while consuming less power.  
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 INTRODUCTION  

Machine learning algorithms performed on High Performance Computers 

(HPC) [56] address complex challenges such as mapping the human genome, 

investigating medical therapies, pinpointing tumors, predicting climate trends and 

executing high frequency derivative trading. These problems are plagued by 

exponentially growing datasets and pose a major challenge to HPC architects as they 

cannot be adequately addressed by simply adding more parallel processing. These 

problems are sequential in the sense that each parallelizable step depends on the 

outcome of the preceding step, and typically, large amount of data is exchanged 

(synchronized) between sequential and parallel processing cores in each step [47] 

(Figure 1). While microprocessor performance has been doubling every 18-24 months, 

this improvement has not been matched by external memory (DRAM) latencies, which 

have only improved by 7% per year [27]. HPC architectures are thus challenged by the 

difficulty of synchronizing data among the processing units, having material impact 

on speedup and power dissipation.  

The preferred solution no longer features a single processing unit augmented by 

memory and disk drives, but a different class of processors capable of exploiting data-

level parallelism. Vector machines and SIMD architectures are a class of parallel 

computers with multiple processing units performing the same operation on multiple 

data points simultaneously [1][23][6]. Such machines exploit data level parallelism, 

and are thus well suited for machine learning over Big Data [56]. High utilization of 

SIMD processor requires very high computation-to-bandwidth ratio and large data 

sets [37]. Excess of coarse SIMD computing elements operating at high rates results 

in irregular thermal density and hotspots [55], further limiting SIMD scalability. 

Power dissipation and on-chip communication are the primary factors limiting the 

scalability of on-chip parallel architectures [12]. These factors may become more 

pronounced as the size and complexity of data sets continue to grow faster than 

computing resources. 
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Figure 1. Typical sequential / parallel processing flow 

 

It has been shown [42][29] that the maximal acceleration of a fine grain workload 

containing sequential and concurrent parts, occurs when the sequential section is 

assigned to a large, high ILP sequential processor (containing, for example, 

accelerators such as double precision floating point unit, function generator and 

branch prediction unit), depicted on the right side of Figure 2, while the concurrent 

part is assigned to a massive number of fine grain low power processing array, shown 

on the left side of Figure 2. That array is organized as a conventional SIMD (CSIMD). 

An immediate limiting factor of such architectures is synchronization requiring data 

exchange [63] between the sequential processor and the processing array, depicted as 

a red bus in Figure 2. 

In this paper we propose a novel, hybrid general purpose SIMD computer 

architecture that resolves the issue of synchronization by in-memory computing, 

through combining data storage and massively parallel processing. Figure 3 details 

the architecture of the GP-SIMD processor, comprising a sequential CPU, a shared 

memory array, instruction and data caches, a SIMD coprocessor, and a SIMD 

sequencer. The SIMD coprocessor contains a large number of fine-grain processing 

units, each comprising a single bit ALU, single bit function generator and a 4-bit 

register file. The GP-SIMD processor is thus a large memory with massively parallel 

processing capability. No data synchronization between the sequential and parallel 

segments is required since both the general purpose sequential processor and SIMD 

co-processor access the very same memory array. Thus, no time and power penalties 

are incurred for synchronization.  
 

 

 

 
Figure 2. Synchronization between sequential processor and 

conventional SIMD co-processor 
 Figure 3. GP-SIMD architecture 

 

The GP-SIMD delivers a number of advantages over CSIMD architecture:  
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 Data processing and data storage are unified. There is no need for data transfer 

between sequential memory and SIMD PUs; 

 GP-SIMD allows concurrent operation of the sequential processor and SIMD co-

processors on the shared memory, allowing the sequential processor to offload a 

task to the SIMD while continuing to process some other sequential functions.  

 The number of GP-SIMD fine grain processing units matches the number of 

memory rows, striving to match the entire dataset. This enables massive 

parallelism and mitigates the PU-to-external-memory bottleneck of CSIMD 

architectures [43]. 

 The GP-SIMD architecture enables the sequential processor to associatively 

address the memory array. It may thus allow reduction of software complexity for 

certain sequential algorithms.  

 GP-SIMD power dissipation is distributed uniformly over the entire processing 

array rather than being concentrated around a smaller number of large, power 

hungry processing cores. Thus, there are fewer hotspots leading to further 

reduction of temperature dependent leakage power [8]. 

 

The first contribution of this paper is setting a taxonomy categorizing previous works 

in the processing-in-memory (PiM) and SIMD fields. The second contribution is the 

novel integration of a fine grain massively parallel SIMD co-processor with a standard 

general purpose sequential processor and a shared 2D memory array, leading to 

improvement in performance as well as reduction in power dissipation. The third 

contribution of this paper is the comparative performance and power analysis of GP-

SIMD, a Conventional SIMD processor (CSIMD) and an Associative Processor 

(AP) [62], supported by analytical modeling and cycle-accurate simulations. Our 

research indicates an inflection point where GP-SIMD outperforms both CSIMD and 

AP in both performance and power. 

The rest of this paper is organized as follows. Section 2 discusses the related work. 

Section 3 provides a detailed description of the GP-SIMD architecture and its operation. 

Section 4 presents analytical modeling and cycle accurate simulation of GP-SIMD 

performance and power consumption and compares it to CSIMD processor and to an 

AP models. Section 5 concludes this paper.  

 RELATED WORK 

A substantial portion of this work is reserved for development and evaluation of 

analytical models for the GP-SIMD, CSIMD and AP models. Analytical models for most 

building blocks of modern ICs (e.g., processing units, interconnection networks) have 

been extensively researched. These models enable the exploration of the chip design 

space in a reasonable timeframe, and are thus becoming an increasingly important 

technique used in the design of chip multiprocessors [15][26][29][36][61]. Polack [45] 

modeled the performance of modern CPUs as a square root function of the resource 

assigned to them. Morad et al. [42] and Hill et al. [42][29] augmented Amdahl’s law 

with a corollary to multicore architecture by constructing a model for multicore 

performance and speedup.  

The interactions between multiple parallel processors incur performance overheads. 

These overheads are a result of synchronization, communication and coherence costs. 

Analytical models for these overheads have been studied as well. Morad et al. [42] 

modeled the synchronization, communication and coherence as a time penalty on 

Amdahl law, concluding that asymmetric multiprocessors can reduce power 

consumption by more than two thirds with similar performance compared to 

symmetric multiprocessors. Yavits et al. [63] studied the overheads and concluded that 

in applications with high inter-core communication requirements, the workload should 
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be executed on a small number of cores, and applications of high sequential-to-parallel 

synchronization requirements may better be executed by the sequential core. Loh et 

al. [36] introduced an extension to Hill and Marty’s multi-core cost/ performance model 

to account for the uncore components, concluding that to sustain the scalability of 

future many-core systems, the uncore components must be designed to scale sub-

linearly with respect to the overall core count. Morad et al. [39][41][40] presented 

several frameworks that, given (a) a multicore architecture consisting of last level 

cache (LLC), processing cores and a NoC interconnecting the cores and the LLC; (b) 

workloads consisting of sequential and concurrent tasks; and (c) physical resource 

constraints (area, power, execution time, off-chip bandwidth), find the optimal 

selection of a subset of the available processing cores and the optimal resource 

allocation among all blocks.  

Modeling of SIMD processing performance has been thoroughly discussed. Hong et 

al. [30] propose a simple analytical model that estimates the execution time of 

massively parallel programs. Zhang et al. [66] develop a microbenchmark-based 

performance model for NVIDIA GeForce 200-series GPUs. 

The concept of mixing memory and logic has been around since the 1960s [47]. 

Similar to DAP [51], STARAN [53][9], CM-2 [59], and GAPP [16] computer 

architectures, GP-SIMD belongs to a Processing-In-Memory (PiM) class of 

architectures that use a large number of Processing Units (PUs) positioned in 

proximity to memory arrays to implement a massively parallel SIMD computer. To 

differentiate between GP-SIMD and other works, and since keywords like PiM and 

SIMD are often used with different meanings in mind, we first classify previous works 

as follows: 

 In-Memory, SIMD: A very large number of small (typically single bit) SIMD 

processing unit are implemented on memory periphery, matching the number of 

memory rows or columns. 

 In-Memory, Associative: A very large number of small (typically single bit) 

associative processing unit are implemented on memory periphery, matching the 

number of memory rows, or columns, or even the number of memory bits. 

 Near-Memory, SIMD: Many processing unit (usually clustered) are integrated with 

large blocks of memory. Typically, the processing units incorporate floating point 

engines. 

 Near-Memory, Non-SIMD: Large sequential processors integrated with large 

memory blocks. 

 Off-Memory, SIMD Accelerators: Several processing units, typically with integer 

and floating point engines, operated by main processors. 

The taxonomy of related works is presented in Figure 4. 

 

In-Memory, SIMD category has been a popular subject of research: Gokale et al. [22] 

designed and fabricated Terasys, a processor-in-memory (PIM) chip, a standard 4-bit 

memory augmented with a single-bit ALU controlling each column of memory.  

Lipovsky et al. [35] introduced a Dynamic Associative Access Memory (DAAM) 

architecture where a large number of single bit processing units are put in a DRAM's 

sense amps. Such DRAM with single-bit ALU delivering arithmetic as well as 

associative processing is shown to offer nearly three orders of magnitude better cost 

performance than a conventional microprocessor. Dlugosch et al. [16][17] introduced 

the Automata Processor, a massively parallel processor integrated on a DRAM chip, 

specifically designed to implement complex regular expression automata for pattern 

matching. 

In-Memory, Associative category has been thoroughly researched: Foster [21] 

detailed an Associative Processor that combines data storage and data processing, and 
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functions as a massively parallel SIMD processor and a memory at the same time. 

Sayre et al. [53] and Batcher [9] discussed STARAN, Goodyear's single-bit SIMD array 

processor, where the PEs communicate with a multi-dimensional access (MDA) 

memory. In bit-slice access mode, associative operations are performed on single bit-

slice of all words in parallel, while the word access mode is used in the I/O operations 

to access a single word, so as to allow faster word access to the array from an external 

data source. Scherson et al. [54] distributed logic among slices of storage cells such that 

a number of bit-planes share a simple logic unit enabling bit-parallel arithmetic. Potter 

et al. [46] presented a parallel programming paradigm called ASC (Associative 

Computing), offering an efficient associative-based, programming model combining 

numerical computation (such as convolution, matrix multiplication, and graphics) with 

non-numerical computing (such as compilation, graph algorithms, rule-based systems, 

and language interpreters). Akerib et al. [3][2] demonstrated an efficient 

implementation of several computer vision algorithms on Associative Processor. Yavits 

et al. [65] designed and implemented stand-alone Associative Processor chip and 

studied its performance. Further, Yavits et al. [62] presented a computer architecture 

where an Associative Processor replaces the last level cache and the SIMD accelerator, 

showing performance and power benefits. 

Near-Memory, SIMD category incorporates several notable works. Reddaway [51] 

presented a Distributed Array Processor (DAP), a 64×64 single bit SIMD processing 

units (PEs) with 4096 bits of storage per PE. Programs for the DAP were written in 

DAP FORTRAN with 64x64 matrix and 64 units vector primitives. Cloud [16] 

presented the Geometric Arithmetic Parallel Processor (GAPP), a two dimensional 

array of single bit SIMD processors, where each processor is allocated with and 

addresses a distinct memory bank. Tucker et al. [59] presented the Connection 

Machine’s hypercube arrangement of thousands of single bit SIMD processors, each 

with its own 4 kbits of RAM. Each chip contained a communication channel, 16 

processors and 16 RAMs. The CM-1 employed a hypercube routing network, a main 

RAM, and an input/output processor. The CM-2 added floating-point numeric co-

processors and more RAM. Midwinter et al. [38] presented a wafer-scale processor 

containing 128*128 processing SIMD units each consisting of ALU, 128 bits of local 

RAM, an Input/Output register and a control register. Brockman et al. [13] evaluated 

the die cost vs. performance tradeoffs of PIM-Lite system consisting of a multithreaded 

core with SIMD accelerator integrated with DRAM, that could serve as the memory 

system of a host processor, realize a performance speedup of nearly a factor of 4 on N-

Body force calculation. Note however that the integration of logic into DRAM cells is 

neither simple nor efficient due to the different manufacturing process utilized for 

DRAM. 

Near-Memory, Non-SIMD category has been a popular subject of research. 

Kozyrakis et al. [33] studied IRAM (intelligent RAM). IRAM utilizes the on-chip real-

estate for dynamic RAM (DRAM) memory instead of SRAM caches, based on the fact 

that DRAM can accommodate 30 to 50 times more data than SRAM. Having the entire 

memory on the chip, coupled to the processor through an on-chip high bandwidth and 

low-latency interface, benefits architectures that demand fast memory I/O. This is 

clearly limited to applications that require no more data than can fit in that DRAM. 

Hall et al. [25] developed DIVA, the Data-Intensive Architecture, combining PIM 

memories with one or more external host processors and a PIM-to-PIM interconnect. 

DIVA increases memory bandwidth through performing selected computation in 

memory, reducing the quantity of data transferred across the processor-memory 

interface; and provides communication mechanisms for moving both data and 

computation throughout memory, further bypassing the processor-memory bus. Kogge 

et al. [32] proposed to overcome latencies between the main memory and the high 
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performance CPUs with HTMT, a multi-level memory system using Processing-In-

Memory architectures which actively manage the flow of data without centralized CPU 

control. Suh et al. [58] presented a PIM-based multiprocessor system, the System Level 

Intelligent Intensive Computing (SLIIC) Quick look (QL) board. This system includes 

eight DRAM PIM array chips and two FPGA chips implementing an interconnect 

network. Sterling et al. [57] studied Gilgamesh, an architecture that extends existing 

PIM capabilities by incorporating advanced mechanisms for virtualizing tasks and 

data and providing adaptive resource management for load balancing and latency 

tolerance. The Gilgamesh execution model is based on a middleware layer allowing 

explicit and dynamic control of locality and load balancing. Almási et al. [4] introduced 

Cyclops, an architecture that integrates large number of processing cores, main 

memory and communications hardware on a single chip, and studied the performance 

of several scientific kernels running on different configurations of this architecture. 

Kumar [34] introduced "Smart Memory", 2D array of packet processing units, each 

with local memory array. The PEs are interconnected together via a 2D mesh NoC. 

The smart memory chips are aimed at speeding packet processing jobs on large dataset. 

Off-Memory Vector/SIMD Multimedia Extension architectures include Intel’s x86 

SIMD (from MMX to later generations [1]), IBM/Motorola/Apple AltiVec engine [5] [48], 

and ARM Neon [6]. 

Our proposed GP-SIMD architecture is different from the cited works, as it 

combines a sequential processor, in memory hybrid SIMD and Associative co-processor 

and a two-dimensional-access memory such that: (a) the data are shared between the 

sequential processor and the SIMD co-processor, that is, the data remain in the same 

place rather than moved back-and-forth between the two; (b) the sequential processors 

and the SIMD co-processor do not incur penalties due to the shared memory (relative 

to a single port memory); and (c) the shared memory array is similar to a standard on-

chip single port memory in terms of area, power and performance. The GP-SIMD is 

somewhat similar to the Associative Processor [21]. We compare these two 

architectures, as well as an abstract GPU like SIMD processor in terms of area, energy 

and performance, concluding that the GP-SIMD prevails in all criteria. 

 
In-Memory Near-Memory Off-Memory 

SIMD 

Terasys [22] 

DAAM [35] 

Automata [16] 

SIMD 

DAP [51] 

GAAP [16] 

CM [59] 

WaferScale [38] 

PIM-Lite[11] 

GPU [43] [31] 

CSIMD 
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Multimedia 
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x86 SIMD [1] 
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ASSOCIATIVE 

AP [21] [54] [46] 

[3] [2] [65] [62] 
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iRAM [33] 

DIVA [25] [18] 
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Figure 4. PiM and SIMD Taxonomy 

 THE GP-SIMD PROCESSOR 

In this section we present the GP-SIMD, detail its internal architecture and its 

arithmetic, logic and associative processing capabilities, and establish analytical 

performance and power models. Further, we discuss SRAM-like implementation of the 

GP-SIMD memory array. 

GP-SIMD 
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 Top Level Architecture  

The GP-SIMD is a hybrid general purpose and SIMD computer architecture that 

resolves the issue of synchronization by in-memory computing, through combining 

data storage and massively parallel processing. As illustrated in Figure 7, references 

to on-chip memory ‘row’ (r) and ‘column’ (c) are physical. Each row may contain many 

words of software programmable width (w) (if w is constant for all words, the number 

of words is thus r· c/w). The number of rows typically matches the dataset elements, 

N. 

 Sequential processor accesses either one word at a time, or multiple words. 

Typically, such a transaction accesses one physical row at a time. 

 The SIMD reads/writes a bit-slice (having r bits) comprising the same bit-number 

from all words in some partition of the memory. Physically, it may access multiple 

bits in a physical row and all rows per access, namely accesses multiple columns 

of the physical array. 

 

Figure 3 details the architecture of a GP-SIMD processor, comprising the sequential 

CPU, shared memory array, instruction and data cache, SIMD coprocessor, SIMD 

sequencer, interconnection network and a reduction tree. The sequential processor 

schedules and operates the SIMD processor via the sequencer. In a sense, the 

sequential processor is the Master controlling a slave SIMD co-processor. The SIMD 

coprocessor contains a number of fine-grain processing units (PUs), as depicted in 

Figure 5, each containing a single bit Full Adder (FA), single bit Function Generator 

(FG) and a 4-bit register file, RA, RB, RC and RD. A single PU is allocated per row of 

the shared memory array, and physically resides close to that row. The PUs are 

interconnected using an interconnection network (discussed in the context of Figure 8 

below). The set of all r registers of the same name constitute a register slice.  Note that 

the length of the memory row (e.g., 256 bits) may be longer than the word length of the 

sequential processor (e.g., 32 bits), so that each memory row may contain several words. 
 

 
Figure 5. GP-SIMD Processing unit 

 

When the SIMD reads data from the shared memory, the contents of a bit slice of 

the memory are transferred into the register slice (RAs, RBs or RCs). Upon writing to 

the shared memory, the contents of one of the register slices are transferred into the 

GP-SIMD memory array. A conditional register (RD) is utilized to enable 

special/masked operations as depicted in TABLE 1. 

The RD_INST is a part of the SIMD co-processor instruction bus driven by the 

sequencer, and each RD_INST value specifies an operation (depicted as a bus going 

from the sequencer to the SIMD co-processor in Figure 3). While the first four 

operations are self-explanatory, the last two operations allow the sequential processor 

to perform associative commands on the memory array, as detailed in section 3.4 below.  
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TABLE 1 

Conditional/Masked Operations 

RD_INST RD Value Operation 

00 0 Memory access (read/write) by the sequential processor or the SIMD co-

processor 

00 1 Memory access; If memory-read by SIMD co-processor, reset RB  

01 0 SIMD co-processor memory-write of RA 

01 1 SIMD co-processor memory-write of RB 

10 0 Disable row for memory access by sequential processor 

10 1 Enable row for memory access by sequential processor 

 Operating Modes  

The GP-SIMD may be operated in three modes: 

 Sequential Processing mode, in which the general purpose sequential processor 

accesses the data in memory during the execution of the sequential segments of a 

workload; Sequential processor addresses a row of the memory, and reads/writes 

to a group of columns of the memory, corresponding to its data word-length (e.g., 

32 bits). In practice, the sequential processor utilizes a cache and accessing the 

memory is based on cache lines, as discussed in Section 3.7 below. 

 SIMD Processing mode, in which the parallelizable segments of a workload are 

executed. SIMD addresses a column of the memory, and reads or writes to all or a 

portion of the rows of the memory. Note that each PU corresponds to a single 

memory row. Thus in a single SIMD memory access, all PUs (or portion thereof) 

simultaneously read from or write into a single column of the memory array.  

 Concurrent Mode, in which both the sequential processor and the SIMD co-

processor can access the shared memory. 

No data synchronization between sequential and parallel segments is required 

since both the sequential processor and SIMD co-processor access the very same 

memory array. Thus, time and power are no longer incurred for data synchronization. 

 Arithmetic / Logic Operations 

GP-SIMD can implement a wide range of arithmetic and logic processing tasks. 

Consider a workload using two datasets, A and B, each containing N elements, where 

each element is m bits wide. These vectors are mapped into the GP-SIMD memory 

array such that two 𝑚 bit adjacent column-groups hold vectors A and B. Assume that 

we need to add the two vectors and place the results into m+1 bit column-group S, as 

illustrated in Figure 6 (where m=4). The addition is performed in 𝑚 single-bit addition 

steps:  

𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗]     ∀ 𝑖 = 0, … , 𝑚 − 1 (1) 

where 𝑖 is the bit index and ‘∗’ is the vector index (corresponding to a PU and memory 

row). A bitwise vector addition of datasets having four elements (N=4) of four bits word-

length (m=4) is shown in Figure 7. Six cycles are demonstrated in six sub-figures. Each 

sub-figure illustrates the PU registers RA, RB, RC and the memory array with the 

operands A, B and the output S. In cycle 1, column A[0] is copied into RA and RC is 

reset to all zeroes. In cycle 2, column B[0] is copied into RB. In cycle 3, RA and RB are 

added; the sum is written into RB and the carry replaces RC. In addition, column A[1] 

is read into RA. In cycle 4, the sum in RB is copied to S[0]. In cycle 5, column B[1] is 

read into RB. This process repeats in subsequent cycles. Since addition is carried out 

simultaneously for all vector elements, fixed point 𝑚 bit addition consumes 3𝑚 ∈ 𝑂(𝑚)  
cycles, independent of the size of the vectors N. 
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Figure 6. Memory array containing three operands (m=4) 

 

Using the same logic, subtracting or performing logic AND, OR, XOR via the 

function generator on the two operand sets entails 𝑂(𝑚)  cycles as well. Note the 

contrast with CSIMD architectures having k PUs where k<<N, such as 2-16 PUs SIMD 

accelerators in CPUs [6];  they require O(𝑁 𝑘⁄ ) ∈ 𝑂(𝑁) cycles to add N data elements. 

Compare operation between the two sets A and B entails 2𝑚 ∈ 𝑂(𝑚) cycles. Compare 

immediate operation between set A and a fixed word sourced from the sequential 

processor requires only 1𝑚 ∈ 𝑂(𝑚) cycles since the second operand is sourced from the 

sequencer, not from the memory array. 

Fixed point multiplication and division in GP-SIMD are also implemented bit-

serially but word-parallel, consisting of a series of add-shift and subtract-shift vector 

operations. Shift is implemented by appropriate column addressing and therefore 

requires no extra cycles. Thus, fixed point 𝑚 × 𝑚 𝑏𝑖𝑡  vector multiplication requires 

3𝑚 ∗ 𝑚 ∈ 𝑂(𝑚2) cycles, regardless of the vector size, N. Floating point arithmetic for 

GP-SIMD is somewhat more complex to implement. Different exponents require 

shifting mantissas by different lengths, resulting in a sequence of bit-serial vector 

operations. IEEE single precision floating point vector multiplication takes close to 

2500 cycles, regardless of the length of the dataset, N. 
 

  
Cycle 1: RC=0, RA=A0 Cycle 2: RB=B0 

  
Cycle 3: RB=RA+RB+RC, 
               RC=Cout, RA=A1 

Cycle 4: S0=RB 

  
Cycle 5: RB=B1 Cycle 6: RB=RA+RB+RC, 

               RC=Cout, RA=A2 
Figure 7. Addition, cycle by cycle. 

 Associative Operations 

GP-SIMD, besides being a massively parallel SIMD accelerator, can implement 

classical CAM operations such as associative search, sorting and ordering. The CAM 

allows comparing all data words to a key, tagging the matching words, and possibly 

reading some or all tagged words one by one. Consider a large vector, where each 

ROW 

C
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L
 

ROW 
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L
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element is m bits wide, illustrated by column A in Figure 6. The Sequential processor 

wishes to find all elements in vector A matching a certain Key of m bits, and reset the 

matched values of A (that is, A[i|A[i]==Key]=0). The sequential CPU issues a compare 

immediate of Key on column A, storing the single bit-slice compare results output in 

register RD. At this point, register RD has logic one in all rows where A matches the 

Key and zero elsewhere. Next, a masked write is performed by the sequential processor 

only to flagged rows of the memory array. To that end, the output of RD enables writing 

of each memory row (RD_INST bus is set to ‘10’), and the sequential processor writes 

‘0’ to the A column of the memory array. Only the matching rows are enabled for 

writing, and the A values of only these rows are reset. Elsewhere, in non-matching 

rows, the A values are left unaffected. 

Content-addressable access is achieved as follows. Assume that the memory array 

contains a vector of unique indices (A), adjacent to a vector of data (B). Comparing 

vector A with a key, followed by setting the RD_INST Bus to ‘10’ while issuing read to 

the memory array, allows the sequential processor to fetch a single value of vector B, 

corresponding to the row in which vector A matched the Key (that is, 

Output=B[i|A[i]==Key]). When multiple rows match the key, the values must be read 

one by one. 

A portion of GP-SIMD memory grid may be programed to mimic bit-serial TCAM. 

Wildcard functionality can be achieved by storing a bit and its complement in adjacent 

columns of a row, while programing the SIMD to OR the output of the results of two 

separate compare operation performed on each bits against a key. Searching with an 

immediate wildcard is accomplished by simply skipping the relevant columns.  

 Interconnection Network  

Arithmetic, logic and associative operations presented in the previous sub-sections 

require the relevant operands to be available at the memory row of the PU. However, 

common workloads require inter-PU data communications. Depending on the 

workload, communication requirements may vary from no communication (for 

“embarrassingly parallel” tasks such as Black-Scholes option pricing) to relatively 

intense communications (e.g., for FFT). In some cases, support for special pre-defined 

communication patterns or permutations can be useful (e.g., the permutations 

required for FFT). A dedicated interconnect is employed to allow all PUs to 

communicate in parallel. 

Since GP-SIMD processing operation is mainly bitwise, the interconnection can be 

a relatively simple circuit-switched network. An example of an efficient network is a 

logarithmic ±k nearest neighbor, forming N-bit shift register. Assuming each PU has 

a single bit direct access to its ±𝑌 neighbors, where 𝑌 ∈ {1,2,4, … , 𝑙𝑜𝑔2𝑁}, transferring 

in parallel an entire vector of N rows (a slice of the shared array) by H rows up/down 

entails a maximum of 𝑂(𝑚 + 𝑚log2 (𝐻)) cycles, independent of the vector size, N. Note 

that if 𝐻 ⊂ 𝑌, the transfer time entails O(2𝑚) ∈ O(𝑚) cycles. For instance, Figure 8 

shows a ±8 interconnect. Shifting an entire vector of any length (up to the entire 

memory) by 32 rows upwards requires 4 ∙ 2𝑚 cycles. 
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Figure 8. GP-SIMD ±k Nearest Neighbor 
Interconnection Network: Each PU is 

interconnected with nearest neighbors 

±1, ±2, … , ±8 

 Figure 9. Hardware reduction tree, illustrated for eight PUs 

 

 Reduction Tree 

A common reduction operation sums up a large array of values. Other common 

reduction operations are minimum or maximum. Reduction Tree ([49], earlier 

introduced as a ‘response counter’ in [65]) is an adder tree, enabling bit-serial parallel 

summation of PU values.  

Consider a vector A of N fixed point m-bit elements, as illustrated in Figure 6. 

Further, consider a hardware reduction tree implemented using a pipelined binary 

adder tree. The first level of the tree sums two single bits from two adjacent PUs. 

Following log2 𝑁  levels, the scalar sum of the entire array becomes available, as 

illustrated in Figure 9. The fixed precision summation of vector A entails reading a 

single column slice of vector A, LSB first, and summing this column via the reduction 

tree. The addition is carried out simultaneously for all vector elements, column-slice 

at a time until all m columns have been processed. The m outputs of the adder tree are 

summed together using an accumulator, where in each summation loop, the output of 

the adder tree is shifted left corresponding to the bit location being processed. 

Therefore, fixed point m bit reduction entails 𝑂(𝑚 + log2(𝑁) + 1) ∈ 𝑂(𝑚 + log2(𝑁)) 

cycles.  

The reduction tree can also be implemented in software using the PUs and the 

interconnection network. Consider for example a vector A of eight fixed point 7-bit 

elements, as in Figure 10. Vectors T, S contain partial sums. Similarly to the hardware 

implementation, the parallel binary tree is implemented as follows: In the first 

(initialization) step, vector A is copied onto S. In the second step, vector S is shifted 

one row up and stored in vector T, followed by adding vectors T and S. The oddly 

addressed elements of vector S contain the results of the first step of the binary tree 

addition. In the third step, vector S is shifted two rows up and stored in vector T, 

followed by adding vectors T and S. Vector S now contains the results of the second 

level of the addition tree. In the fourth step, vector S is shifted four rows up and stored 

in vector T, followed by adding vectors T and S. Vector S now contains the results of 

the third level of the tree, and the sum of all elements of A appears in the first element 

of S. 
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Step-1: 

S=A 

Step-2: 

T=S↑1; S=S+T 

Step-3: 

T=S↑2;    S=S+T 

Step-4: 

T=S↑4;  S=S+T 

Figure 10. Software reduction tree, illustrated for eight PUs 

 

In general, given a ±log2𝑁 interconnection network, fixed point m-bit reduction 

entails 𝑂(2m + (2𝑚 + 3𝑚) log2(𝑁)) ∈ 𝑂(𝑚 log2(𝑁)) cycles. In case of large datasets and 

limited interconnection networks, the last few shifting and summation steps can be 

executed serially by the sequential processor, so as to save processing time and power. 

 Circuit Implementation 

Algorithmic computation necessitates storage of temporary variables. Each GP-

SIMD’s PU utilizes a memory row as its register file for storage of memory variables 

and temporaries. The width of the memory array is likely to be much higher than the 

word width of the sequential processor (for example the sequential processor may have 

64-bit word-length, while the SIMD may need to address 256 distinct columns). A 

typical GP-SIMD memory array is depicted in Figure 11. Two implementations are 

proposed: a single memory array, which contains the shared and SIMD-only sections, 

and a dual memory array, in which the SIMD-Only and the shared memory sections 

are separate.  

 
Figure 11. GP-SIMD memory segmentation. Single memory array (a) and dual memory array (b). 

 

Consider the single memory array of Figure 11(a). To enable 2D access (the 

sequential processor accessing by words and the SIMD co-processor accessing by 

columns), two types of cells are proposed. A shared-memory cell consisting of a 7-

transistor SRAM bit is used in the shared columns (Figure 12), and a SIMD-Only cell 

using a 5-transistor cell is used in the SIMD-only columns (Figure 13). 
 

A T S A T S A T S A T S

1 1 1 2 3 1 12 15 1 112 127

2 2 2 4 6 2 24 30 2 96 126

4 4 4 8 12 4 48 60 4 64 124

8 8 8 16 24 8 96 120 8 0 120

16 16 16 32 48 16 64 112 16 0 112

32 32 32 64 96 32 0 96 32 0 96

64 64 64 0 64 64 0 64 64 0 64
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Figure 12. Shared SRAM cell Figure 13. SIMD Only SRAM cell 

 

The standard 6T SRAM bit cell (blue in Figure 12) is amended by a pass-gate to 

enable column read/write access (red). In the SIMD-only static bit cell (Figure 13), a 

4T latch (blue) is connected by a pass-gate (red) to enable column read/write access. 

The bit_line, bit_line_not, word_line and associated pass-gates of Figure 12 are 

eliminated in Figure 13 as the sequential processor does not address these cells. 

Reading and writing to the two dimensional memory array is performed as follows: 

 By sequential processor: to read data from memory, the bit_line and bit_line-not 

lines are pre-charged, the word_line is asserted, and the bit lines are sensed. To 

write data to the memory, the bit_line, bit_line-not and the word_line are asserted. 

 By SIMD co-processor: to read data from memory, the column_line is asserted, and 

the row_data is pre-charged. To write data to the memory, the column_line and 

the row_data are asserted. 

When the width of the memory is sufficiently small (e.g., 256 columns), a single 

pass-gate transistor is tied to the row data. In wider arrays, a differential pair, namely, 

row_data and row_data-not and an additional pass-gate transistor may be required. 

GP-SIMD’s 6T and 5T SRAM cell outweigh the AP 12T cell of [62] both area and power-

wise. For the same die area, GP-SIMD array thus packs nearly twice the number of 

memory rows, and offers twice the AP performance for the same die area.  

The memory architecture depicted in Figure 11(a) allows the sequential processor 

and the SIMD co-processor to concurrently read from and write to the memory array. 

Further, the architecture inherently allows segmentation of the memory array along 

both dimensions, so as to avoid conflict and allow processing on parts of the data, as 

follows: 

 Segmentation in the horizontal dimension: since the memory width is larger than 

sequential processor data-bus (for example, 64 bit data-bus and 256 bit wide array), 

the SIMD co-processor may be programmed to read from the entire memory array, 

but write only to the SIMD-Only section, while the sequential processor continues 

to process the shared memory space. 

 Segmentation along the vertical dimension: RD can be used to mask the word_line 

of certain rows.  

 Full segmentation: Access by the sequential processor and the SIMD co-processor 

may be interleaved, to avoid all interference. 

 

Since the number of memory rows in a typical GP-SIMD implementation could be quite 

high (1M+), the GP-SIMD array can be partitioned into n smaller blocks each having 

N/n processors (and N/n complete memory rows). Each block could have, for example, 

its own sequencer. In such a case, all blocks share a piped version of the bus to the 

sequential processor. A potential layout of such an implementation is depicted in 

Figure 14, in which a GP-SIMD array is partitioned into nine smaller blocks. Note the 

connectivity simplicity: the interconnection network is chained (red), and the 

sequential processor memory bus (blue) is connected to all blocks in parallel. Note that 
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since the sequential processor accesses no more than a single memory row at a time, 

such access  involves only a single GP-SIMD block and the path to it; only that path is 

activated to conserve power. Reading data from a GP-SIMD block could entail a few 

cycles due the long path the signal may have to transverse. To mitigate such access 

delays, the sequential processor may include a data cache.  
 

 
Figure 14. GP-SIMD array partitioning. 

 GP-SIMD Performance Summary 

Consider a data set having two m-bit N-element vectors A and B. TABLE 2 summarizes 

the arithmetic/logic performance of the GP-SIMD processor, as analyzed in the 

previous sections. Note that the AP’s arithmetic/logic performance [62] is 2.5-5× lower 

than GP-SIMD’s arithmetic performance, regardless of the number of processing 

elements, N. 
 

TABLE 2 
Arithmetic/Logic performance 

Command Performance (cycles) 

Add/Sub(A, B) 𝑂(3𝑚) 

Add/Sub(A, Immediate) 𝑂(2𝑚) 

Mult/Div(A, B) 𝑂(3𝑚2) 
Mult/Div(A, Immediate) 𝑂(2𝑚2) 
Cmp(A,B) 𝑂(2𝑚) 

Cmp(A, Immediate) 𝑂(𝑚) 

AND/OR/XOR 𝑂(2𝑚) 

AND/OR/XOR(A, Immediate) 𝑂(𝑚) 

Invert(A) 𝑂(2𝑚) 

FP Add/Sub/Mult(A, B) 2500 

HW Reduction tree 𝑂(𝑚 + 𝑙𝑜𝑔2(𝑁)) 

SW Reduction tree 𝑂(5𝑚 𝑙𝑜𝑔2(𝑁)) 

 ANALYTIC MODEL AND COMPARATIVE ANALYSIS 

In this section, we provide an analytical performance and power consumption model 

of the CSIMD, AP and GP-SIMD and compare their relative performance, area and 

power consumption under constrained area and power resources. For the purpose of 

modeling, we assume that the sequential processor is identical in all architectures, 

thus we focus on concurrent workloads. We further assume that the CSIMD executes 

a single fused multiply operation in 1.5GHz, while the GP-SIMD and AP employ faster 

clocks of 2.5GHz, as they execute bitwise rather than word-parallel instructions and 

thus have shorter critical paths. 

Consider a workload having WL single cycle instructions (i.e., arithmetic, control, 

register file access and alike). The workload consists of N fine grain concurrent 
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execution segments, requiring 𝑇𝑅𝑒𝑓 = 𝑊𝐿 ∗ 1 cycles to execute on a baseline reference 

floating point engine capable of performing 1 FLOP/Cycle (single precision floating 

point operation per cycle). Such floating point engine consumes an area of 0.01 𝑚𝑚2 in 

45nm [44] and dissipates 10mW [31]. With 22nm process technology, the same floating 

point engine would consume an area of 0.003 𝑚𝑚2 and dissipate roughly 5mW [15][31]. 

These figures pertain to a baseline floating point engine, without the accompanying 

connectivity logic, register file and the like.  

A portion of the workload instructions, 𝐶𝑆𝑦𝑛𝑐, is dedicated to data synchronization 

before and after each segment starts and ends respectively, while a further portion of 

the workload, 𝐶𝐼𝑛𝑡𝑒𝑟 , is dedicated to data exchange among the execution units. The 

remaining portion of the workload, 𝐶𝑃𝑟𝑜𝑐, is actual processing. We thus have: 

𝐶𝑃𝑟𝑜𝑐 + 𝐶𝑆𝑦𝑛𝑐 + 𝐶𝐼𝑛𝑡𝑒𝑟 = 1 (2) 

In a large design comprising thousands of PUs, it is impractical to consider a 

complex network topology that would consume super-linear area. We thus assume a 

linear complexity ring topology interconnection network in all three architectures, 

where in CSIMD the network is 32bit wide, and in GP-SIMD and AP, the network is 

1bit wide. In a ring topology, within O(N) serial steps, N PUs can exchange data 

according to any permutation.  

 Conventional SIMD Processor 

A Conventional SIMD (CSIMD) co-processor is depicted on the left side of Figure 2. 

The CSIMD coprocessor contains 𝑛𝐶𝑆𝐼𝑀𝐷 baseline PUs, each containing a floating point 

unit and a register file. The PUs are interconnected using an interconnection network. 

The PUs are also connected to the sequential processor shown on the right, through a 

bandwidth-limited interface (denoted by the red bus). Synchronization is moving data 

from the sequential processor to the CSIMD coprocessor before the parallel segment 

begins, and back from CSIMD after the parallel segment completes. Since it involves 

access to a shared resource, 𝑇𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷 might depend on the number of PUs [20][51]. 

The synchronization time [63] can be expressed as follows: 

𝑇𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷 =
𝐶𝑆𝑦𝑛𝑐𝑊𝐿

𝐵𝑊
 (3) 

where 𝐶𝑆𝑦𝑛𝑐 denotes the fraction of the workload that corresponding to synchronization 

overhead, and BW denotes the bandwidth (words per second) of the interface. The 

execution time of the workload on the CSIMD co-processor is thus: 

𝑇𝐶𝑆𝐼𝑀𝐷 =
𝐶𝑃𝑟𝑜𝑐𝑊𝐿

𝑛𝐶𝑆𝐼𝑀𝐷

+ 𝐶𝐼𝑛𝑡𝑒𝑟𝑊𝐿 + 𝑇𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷  (4) 

where 𝑛𝐶𝑆𝐼𝑀𝐷 is the number of CSIMD’s Pus. The speedup of the CSIMD processor over 

the sequential CPU can be written as follows: 

𝑆𝐶𝑆𝐼𝑀𝐷 =
𝑇𝑅𝑒𝑓

𝑇𝐶𝑆𝐼𝑀𝐷

=
𝑛𝐶𝑆𝐼𝑀𝐷

𝐶𝑃𝑟𝑜𝑐 + 𝑛𝐶𝑆𝐼𝑀𝐷 [𝐶𝐼𝑛𝑡𝑒𝑟 +
𝐶𝑆𝑦𝑛𝑐

𝐵𝑊
]

 
(5) 

The area of the CSIMD processor can be presented as follows: 

𝐴𝐶𝑆𝐼𝑀𝐷 = 𝑛𝐶𝑆𝐼𝑀𝐷(𝐴𝐴𝐿𝑈 + 𝐴𝑅𝐹) (6) 

where 𝐴𝐴𝐿𝑈 is the ALU area and 𝐴𝑅𝐹 is the register file area. The inter-PU connection 

network is omitted for simplicity. For efficient comparison between PU and memory 

areas, we represent all area values (ALU, registers, memory) in terms of baseline 

SRAM cell area. Let the baseline SRAM cell area be 1. In 22nm CMOS technology, the 

actual figure is in the range of 0.1𝜇𝑚2 [7]. Then we can write:  
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𝐴𝐴𝐿𝑈 = 𝐴𝐶𝑆𝐼𝑀𝐷𝐴𝐿𝑈𝑜𝑚2 

𝐴𝑅𝐹 = 𝐴𝐶𝑆𝐼𝑀𝐷𝑅𝐹𝑜𝑘𝑚 
(7) 

where 𝐴𝐶𝑆𝐼𝑀𝐷𝐴𝐿𝑈𝑜 is the area of a single bit of a high speed parallel ALU and 𝐴𝐶𝑆𝐼𝑀𝐷𝑅𝐹𝑜 

is the area of a register bit (a flip-flop), both measured in baseline SRAM cell area units; 

𝑚 is data wordlength and 𝑘 is the size of the register file. This model is quite simplistic 

and does not take into account numerous aspects of CSIMD design (instruction cache, 

communication and control, etc.). Its purpose is providing the best case reference 

figures for the comparative analysis of the CSIMD processor’s speedup, area and power. 

The average power of the CSIMD processor can be written as follows: 

𝑃𝐶𝑆𝐼𝑀𝐷 =
1

𝑇𝐶𝑆𝐼𝑀𝐷

[
𝐶𝑃𝑟𝑜𝑐𝑊𝐿

𝑛𝐶𝑆𝐼𝑀𝐷

∙ 𝑃𝑃𝑟𝑜𝑐−𝐶𝑆𝐼𝑀𝐷 + 𝐶𝐼𝑛𝑡𝑒𝑟𝑊𝐿 ∙ 𝑃𝐼𝑛𝑡𝑒𝑟−𝐶𝑆𝐼𝑀𝐷

+
𝐶𝑆𝑦𝑛𝑐𝑊𝐿

𝐵𝑊
𝑃𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷] + 𝑃𝐿𝑒𝑎𝑘−𝐶𝑆𝐼𝑀𝐷 

(8) 

where 𝑃𝑃𝑟𝑜𝑐−𝐶𝑆𝐼𝑀𝐷 is the average power consumed during a single processing operation; 

𝑃𝐼𝑛𝑡𝑒𝑟 is the average power consumed during inter-PU communication; 𝑃𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷 is 

the average power consumed during synchronization, and 𝑃𝐿𝑒𝑎𝑘−𝐶𝑆𝐼𝑀𝐷 is the leakage 

power. Just as in the case of area comparison, we represent all power values (ALU, 

registers, memory) through the write power consumption of a baseline SRAM memory 

cell. Let the power consumption of the baseline SRAM cell during write from ‘0’ to ‘1’ 

or from ‘1’ to ‘0’ be 1. In 22nm CMOS technology, the actual figure is in the range of 

1𝜇𝑊  at 4GHz [28]. Then we can further write the CSIMD power consumption as 

follows: 

𝑃𝑃𝑟𝑜𝑐−𝐶𝑆𝐼𝑀𝐷 = 𝑛𝐶𝑆𝐼𝑀𝐷(𝑃𝐶𝑆𝐼𝑀𝐷𝐴𝐿𝑈𝑜𝑚2 + 𝑃𝐶𝑆𝐼𝑀𝐷𝑅𝐹𝑜𝑘𝑚) 

𝑃𝐼𝑛𝑡𝑒𝑟−𝐶𝑆𝐼𝑀𝐷 = 𝑛𝐶𝑆𝐼𝑀𝐷𝑃𝐼𝑁𝑇𝐸𝑅𝑜𝑚 

𝑃𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷 = 𝑃𝑆𝑌𝑁𝐶𝑜𝑚 
(9) 

where 𝑃𝐶𝑆𝐼𝑀𝐷𝐴𝐿𝑈𝑜  and  𝑃𝐶𝑆𝐼𝑀𝐷𝑅𝐹𝑜  are the average per-bit power consumptions of the 

ALU and RF respectively during computation. 𝑃𝐼𝑁𝑇𝐸𝑅𝑜 is the per-bit power consumption 

during the inter-PU communication. 𝑃𝑆𝑌𝑁𝐶𝑜  is the per-bit power consumed during 

synchronization. 𝑃𝑃𝑟𝑜𝑐−𝐶𝑆𝐼𝑀𝐷 , 𝑃𝐼𝑛𝑡𝑒𝑟−𝐶𝑆𝐼𝑀𝐷  and 𝑃𝑆𝑦𝑛𝑐−𝐶𝑆𝐼𝑀𝐷  are measured in SRAM cell 

write power consumption units. Leakage power can be expressed as follows: 

𝑃𝐿𝑒𝑎𝑚−𝐶𝑆𝐼𝑀𝐷 = βA𝑉𝛼 = γ𝐴𝐶𝑆𝐼𝑀𝐷 (10) 

where 𝐴 is the area, 𝑉 is the supply voltage, α and β are constants, and γ is the leakage 

area coefficient that depends on silicon process and operating conditions.  

 Associative Processor  

In this section we detail the analytical model for the speedup, area and power 

consumption of the AP. In a similar manner to GP-SIMD, the AP [62] does not entail 

data synchronization unless the entire data set does not fit in the AP’s memory array. 

Thus: 

𝑇𝑆𝑦𝑛𝑐−𝐴𝑃 = {

0,                                         𝑁 ≤ 𝑛𝐴𝑃

𝐶𝑆𝑦𝑛𝑐𝑊𝐿

𝐵𝑊

(𝑁 − 𝑛𝐴𝑃)

𝑁
, 𝑁 > 𝑛𝐴𝑃

 (11) 

The execution time of the concurrent portion of the workload can be written as follows: 

𝑇𝐴𝑃 =
𝐶𝑃𝑟𝑜𝑐𝑊𝐿

𝑆𝐴𝑃𝑒𝑛𝐴𝑃

+ 𝐶𝐼𝑛𝑡𝑒𝑟𝑊𝐿𝑚 + 𝑇𝑆𝑦𝑛𝑐−𝐴𝑃 (12) 

where 𝑛𝐴𝑃  is the number of PUs in the AP, 𝑆𝐴𝑃𝑒  is the speedup of associative PU 

relative to the CSIMD’s PU. Lacking a-priori knowledge of the workloads to be 
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executed on the AP, we assume the worst case scenario comprising a continuous series 

of single precision floating point multiplications, which in one direct implementation 

takes 8800 cycles vs. a single cycle on the baseline CSIMD’s PU. In this case 𝑆𝐴𝑃𝐸 =
1/8800. The speedup of the AP can then be written as follows: 

𝑆𝐴𝑃 =
𝑇𝑅𝑒𝑓

𝑇𝐴𝑃

=
𝑛𝐴𝑃

𝐶𝑃𝑟𝑜𝑐

𝑆𝐴𝑃𝑒
+ 𝑛𝐴𝑃 [𝐶𝐼𝑛𝑡𝑒𝑟𝑚 +

𝑇𝑆𝑦𝑛𝑐−𝐴𝑃

𝑊𝐿
]

 
(13) 

The area of the AP can be written as follows: 

𝐴𝐴𝑃 = 𝑛𝐴𝑃(𝐴𝐴𝑃𝑇𝐴𝐺𝑜 + 𝐴𝐴𝑃𝑜𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜) (14) 

where 𝑘 is the width of the associative processor memory array (in 𝑚-bit data words) 

reserved for temporary storage, 𝐴𝐴𝑃𝑇𝐴𝐺𝑜  is the AP TAG cell area, 𝐴𝐴𝑃𝑜  is the AP 

memory cell area, both measured in SRAM cell area units, and 2𝐴𝐴𝐿𝑈𝑜 is the per-PU 

hardware reduction tree size, assuming the adders of each tree level are of growing 

wordlength [62]. Similarly to the CSIMD coprocessor, we ignore the area of the 

interconnection network for simplicity.  

The average power of the AP can be written as follows:   

𝑃𝐴𝑃 =
1

𝑇𝐴𝑃

[
𝐶𝑃𝑟𝑜𝑐𝑊𝐿

𝑆𝐴𝑃𝑒𝑛𝐴𝑃

∙ 𝑃𝑃𝑟𝑜𝑐−𝐴𝑃 + 𝐶𝐼𝑛𝑡𝑒𝑟𝑊𝐿 ∙ 𝑃𝐼𝑛𝑡𝑒𝑟−𝐴𝑃 +
𝐶𝑆𝑦𝑛𝑐𝑊𝐿

𝐵𝑊
𝑃𝑆𝑦𝑛𝑐−𝐴𝑃] + 𝑃𝐿𝑒𝑎𝑘−𝐴𝑃 (15) 

where 𝑃𝑃𝑟𝑜𝑐−𝐴𝑃 is the average power consumed during a single processing operation; 

𝑃𝐼𝑛𝑡𝑒𝑟−𝐴𝑃 is the average power consumed during inter-PU communication; 𝑃𝑆𝑦𝑛𝑐−𝐴𝑃 is 

the average power consumed during synchronization when the entire data set does not 

fit in the AP, and 𝑃𝐿𝑒𝑎𝑘−𝐴𝑃 is the leakage power. In a similar manner to the previous 

section, we can further write the AP power consumption as follows: 

𝑃𝑃𝑟𝑜𝑐−𝐴𝑃 = 𝑛𝐴𝑃𝑃𝐴𝑃𝑜 

𝑃𝐼𝑛𝑡𝑒𝑟−𝐴𝑃 = 𝑛𝐴𝑃𝑃𝐼𝑁𝑇𝐸𝑅𝑜𝑚 

𝑃𝑆𝑦𝑛𝑐−𝐴𝑃 = {

0,                                          𝑁 ≤ 𝑛𝐴𝑃

𝑃𝑆𝑌𝑁𝐶𝑜𝑚
(𝑁 − 𝑛𝐴𝑃)

𝑁
, 𝑁 > 𝑛𝐴𝑃

 
(16) 

where 𝑃𝐴𝑃𝑜  is the average per-bit power consumptions of the AP during 

computation.  𝑃𝐼𝑁𝑇𝐸𝑅−𝑜  is the per-bit power consumption during the inter-PU 

communication. 𝑃𝑆𝑌𝑁𝐶𝑜 is the per-bit power consumed during synchronization. 𝑃𝑃𝑟𝑜𝑐−𝐴𝑃, 

𝑃𝐼𝑛𝑡𝑒𝑟−𝐴𝑃  and 𝑃𝑆𝑦𝑛𝑐−𝐴𝑃  are measured in SRAM cell write power consumption units. 

Leakage power can be expressed as follows: 

𝑃𝐿𝑒𝑎𝑘−𝐴𝑃 = γ𝐴𝐴𝑃 (17) 

Note that for comparison purposes we use the same leakage power formulation 

(represented as a function of area only as in (10)) for both the AP and the CSIMD 

processor. This may overestimate AP power somewhat: First, the leakage power per 

area could be lower for memory than for logic [45]. Second, APs have fewer 

hotspots [64]. Since the leakage power is highly temperature dependent, hotspots may 

lead to higher leakage in the CSIMD processor [8]. A detailed analysis of 𝑃𝐴𝑃𝑜 can be 

found in [62]. 

 GP-SIMD Processor  

In this section we detail the analytical model for the speedup, area and power 

consumption of the GP-SIMD. As discussed in section 3, the GP-SIMD does not entail 

data synchronization unless the entire data set does not fit in the GP-SIMD’s memory 

array. Thus: 
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𝑇𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 = {

0,                                          𝑁 ≤ 𝑛𝐺𝑃𝑆𝐼𝑀𝐷

𝐶𝑆𝑦𝑛𝑐𝑊𝐿

𝐵𝑊

(𝑁 − 𝑛𝐴𝑃)

𝑁
, 𝑁 > 𝑛𝐺𝑃𝑆𝐼𝑀𝐷

 (18) 

The execution time of the concurrent portion of the workload can be written as follows: 

𝑇𝐺𝑃𝑆𝐼𝑀𝐷 =
𝐶𝑃𝑟𝑜𝑐𝑊𝐿

𝑆𝐺𝑃𝑆𝐼𝑀𝐷𝑒𝑛𝐺𝑃𝑆𝐼𝑀𝐷

+ 𝐶𝐼𝑛𝑡𝑒𝑟𝑊𝐿𝑚 + 𝑇𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 (19) 

where 𝑛𝐴𝑃  is the number of PUs in the GP-SIMD, 𝑆𝐺𝑃−𝑆𝐼𝑀𝐷𝑒  is the speedup of 

associative PU relative to the CSIMD’s PU. Similar to the AP analysis, we assume the 

worst case scenario comprising a continuous series of single precision floating point 

multiplications, which in one direct implementation takes 2500 cycles vs. 1 cycle on 

the baseline CSIMD’s PU. In this case 𝑆𝐺𝑃−𝑆𝐼𝑀𝐷𝑒 = 1/2500. The speedup of the GP-

SIMD can then be written as follows: 

𝑆𝐺𝑃𝑆𝐼𝑀𝐷 =
𝑇𝑅𝑒𝑓

𝑇𝐺𝑃𝑆𝐼𝑀𝐷

=
𝑛𝐺𝑃𝑆𝐼𝑀𝐷

𝐶𝑃𝑟𝑜𝑐/𝑆𝐺𝑃𝑆𝐼𝑀𝐷𝑒 + 𝑛𝐺𝑃𝑆𝐼𝑀𝐷 [𝐶𝐼𝑛𝑡𝑒𝑟𝑚 +
𝑇𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷

𝑊𝐿
]

 
(20) 

Following section 3.7, we assume the GP-SIMD’s sequential processor accesses only 

the first L bits of the memory array. Thus, the average size of the memory bit cell is as 

follows: 

𝐴𝐺𝑃𝑆𝐼𝑀𝐷−𝐶𝐸𝐿𝐿𝑜 = {

𝐴𝑆𝐻𝐴𝑅𝐸𝐷𝑜,                                                   𝑘𝑚 ≤ 𝐿
𝐴𝑆𝐻𝐴𝑅𝐸𝐷𝑜𝐿 + 𝐴𝑆𝐼𝑀𝐷𝑂𝑁𝐿𝑌𝑜(𝑘𝑚 − 𝐿)

𝑘𝑚
,   𝑘𝑚 > 𝐿

 (21) 

where 𝑘 is the width of the GP-SIMD memory array (in 𝑚-bit data words) reserved for 

temporary storage, 𝐴𝑆𝐻𝐴𝑅𝐸𝐷𝑜  is the shared memory cell area and 𝐴𝑆𝐼𝑀𝐷𝑂𝑁𝐿𝑌𝑜  is the 

SIMD-only memory cell area, both measured in SRAM cell area units. The total area 

of the GP-SIMD can be written as follows: 

𝐴𝐺𝑃𝑆𝐼𝑀𝐷 = 𝑛𝐺𝑃𝑆𝐼𝑀𝐷(𝐴𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝑈𝑜 + 𝐴𝐺𝑃𝑆𝐼𝑀𝐷−𝐶𝐸𝐿𝐿𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜) (22) 

where 𝐴𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝑈𝑜 is the GP-SIMD processing unit cell area measured in SRAM cell 

area units, and 2𝐴𝐴𝐿𝑈𝑜 is the per-PU hardware reduction tree size. Similarly to the 

CSIMD coprocessor and the AP, we ignore the area of the interconnection network for 

simplicity.  

The average power of the GP-SIMD can be written as follows:   

𝑃𝐺𝑃𝑆𝐼𝑀𝐷 =
1

𝑇𝐺𝑃𝑆𝐼𝑀𝐷

[
𝐶𝑃𝑟𝑜𝑐𝑊𝐿

𝑆𝐺𝑃𝑆𝐼𝑀𝐷𝑒𝑛𝐺𝑃𝑆𝐼𝑀𝐷

∙ 𝑃𝑃𝑟𝑜𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 + 𝐶𝐼𝑛𝑡𝑒𝑟𝑊𝐿 ∙ 𝑃𝐼𝑛𝑡𝑒𝑟−𝐺𝑃𝑆𝐼𝑀𝐷

+
𝐶𝑆𝑦𝑛𝑐𝑊𝐿

𝐵𝑊
𝑃𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷] + 𝑃𝐿𝑒𝑎𝑘−𝐺𝑃𝑆𝐼𝑀𝐷 

(23) 

where 𝑃𝑃𝑟𝑜𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 is the average power consumed during a single processing operation; 

𝑃𝐼𝑛𝑡𝑒𝑟−𝐺𝑃𝑆𝐼𝑀𝐷  is the average power consumed during inter-PU communication; 

𝑃𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 is the average power consumed during synchronization when the entire 

data set does not fit in the AP, and 𝑃𝐿𝑒𝑎𝑘−𝐺𝑃𝑆𝐼𝑀𝐷 is the leakage power. In a similar 

manner to the previous section, we can further write the GP-SIMD power consumption 

as follows: 

𝑃𝑃𝑟𝑜𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 = 𝑛𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝐺𝑃𝑆𝐼𝑀𝐷𝑜 

𝑃𝐼𝑛𝑡𝑒𝑟−𝐺𝑃𝑆𝐼𝑀𝐷 = 𝑛𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝐼𝑁𝑇𝐸𝑅𝑜𝑚 

𝑃𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 = {
0,                      𝑁 ≤ 𝑛𝐺𝑃𝑆𝐼𝑀𝐷

𝑃𝑆𝑌𝑁𝐶𝑜𝑚, 𝑁 > 𝑛𝐺𝑃𝑆𝐼𝑀𝐷
 

(24) 
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where 𝑃𝐺𝑃𝑆𝐼𝑀𝐷𝑜  is the average per-bit power consumptions of the AP during 

computation.  𝑃𝐼𝑁𝑇𝐸𝑅𝑜  is the per-bit power consumption during the inter-PU 

communication. 𝑃𝑆𝑌𝑁𝐶𝑜  is the per-bit power consumed during synchronization. 

𝑃𝑃𝑟𝑜𝑐−𝐺𝑃𝑆𝐼𝑀𝐷 , 𝑃𝐼𝑛𝑡𝑒𝑟−𝐺𝑃𝑆𝐼𝑀𝐷  and 𝑃𝑆𝑦𝑛𝑐−𝐺𝑃𝑆𝐼𝑀𝐷  are measured in SRAM cell write power 

consumption units. Leakage power can be expressed as follows: 

𝑃𝐿𝑒𝑎𝑘−𝐺𝑃𝑆𝐼𝑀𝐷 = γ𝐴𝐺𝑃𝑆𝐼𝑀𝐷 (25) 

Note that for comparison purposes we use the same leakage power formulation 

(represented as a function of area only as in (10)) for the CSIMD, AP and GP-SIMD 

architectures. This might be somewhat unfair to the GP-SIMD: First, the leakage 

power per area could be lower for memory than for logic [45]. Second, GP-SIMD, in a 

similar manner to AP, should have fewer hotspots [64]. Since the leakage power is 

highly temperature dependent, hotspots may lead to higher leakage in the CSIMD 

processor [8].  

 Performance under constrained area 

Consider a given die total area, 𝐴𝑇𝑜𝑡𝑎𝑙. The number of the CSIMD, AP and the GP-

SIMD processing units can be found as follows: 

𝑛𝐶𝑆𝐼𝑀𝐷 =
𝐴𝑇𝑜𝑡𝑎𝑙

𝐴𝐴𝐿𝑈𝑜𝑚2 + 𝐴𝑅𝐹𝑜𝑘𝑚
 

𝑛𝐴𝑃 =
𝐴𝑇𝑜𝑡𝑎𝑙

𝐴𝐴𝑃𝑇𝐴𝐺𝑜 + 𝐴𝐴𝑃𝑜𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜

 

𝑛𝐺𝑃𝑆𝐼𝑀𝐷 =
𝐴𝑇𝑜𝑡𝑎𝑙

𝐴𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝑈𝑜 + 𝐴𝐺𝑃𝑆𝐼𝑀𝐷−𝐶𝐸𝐿𝐿𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜

 

(26) 

Substituting 𝑛𝑆𝐼𝑀𝐷 , 𝑛𝐴𝑃  and 𝑛𝐺𝑃𝑆𝐼𝑀𝐷  into the equations listed in the previous sub-

sections, we determine the speedup and the power equations of each architecture. The 

area and power parameters we use for modeling purposes are listed in TABLE 3. 
 

TABLE 3 
Model Parameters 

Parameter Description Attributed to Value 
𝐴𝐶𝑆𝐼𝑀𝐷𝐴𝐿𝑈𝑜 FP ALU bit cell area  CSIMD 40 (1) 
𝑃𝐶𝑆𝐼𝑀𝐷𝐴𝐿𝑈𝑜 FP ALU bit cell power  CSIMD 40 (1) 

𝐴𝐴𝐿𝑈𝑜 ALU bit cell area  All 10 (1) 
𝑃𝐴𝐿𝑈𝑜 ALU bit cell power  All 10 (1) 

𝐴𝐶𝑆𝐼𝑀𝐷𝑅𝐹𝑜 Register bit (FF) area  CSIMD 3 (1) 
𝑃𝐶𝑆𝐼𝑀𝐷𝑅𝐹𝑜 Register bit (FF) power  CSIMD 3 (1) 

𝑆𝐴𝑃𝑒 AP speedup relative to sequential CPU   AP 1/8800 
𝐴𝐴𝑃𝑜 AP bit cell area  AP 2 (1) 
𝑃𝐴𝑃𝑜 AP bit cell power  AP 4 (1) 

𝐴𝐴𝑃𝑇𝐴𝐺𝑜 AP TAG cell area  AP 1 (1) 
𝑆𝐺𝑃𝑆𝐼𝑀𝐷𝑒 GP-SIMD speedup relative to sequential CPU   GP-SIMD 1/2500 
𝐴𝑆𝐻𝐴𝑅𝐸𝐷𝑜 GP-SIMD Shard bit cell area  GP-SIMD 7/6 (1) 

𝐴𝑆𝐼𝑀𝐷𝑂𝑁𝐿𝑌𝑜 GP-SIMD SIMD-Only cell area  GP-SIMD 5/6 (1) 
𝐴𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝑈𝑜 GP-SIMD PU area  GP-SIMD 10 (1) 
𝑃𝐺𝑃𝑆𝐼𝑀𝐷𝑃𝑈𝑜 GP-SIMD PU power  GP-SIMD 10 (1) 

𝑃𝐼𝑁𝑇𝐸𝑅𝑜 GP-SIMD Intercommunication power  All 200 (1) 
𝑃𝑆𝑌𝑁𝐶𝑜 GP-SIMD Synchronization power  All 200 (1) 

𝑚 Data wordlength  All 32 
𝑘 Register file size (in 32-bit words) All 8 
𝐿 Sequential processor wordlength  GP-SIMD 64 
γ Static power coefficient All 50mW/mm2 

𝐶𝑆𝑦𝑛𝑐 Workload portion dedicated for Synchronization All 3% 

𝐶𝐼𝑛𝑡𝑒𝑟 Workload portion dedicated for inter-core communication All 0% 

(1) Area and power parameters are relative to the area and power of SRAM bit cell respectively; the values are based on 

typical standard cell libraries. 
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Speedup vs. area for the CSIMD coprocessor, the AP and the GP-SIMD is shown in 

Figure 15(a). For example, at 2𝑚𝑚2 about 500 reference floating point engines are 

enabled (including registers and other logic besides the ALUs) in the CSIMD processor, 

and dissipate about 8W. The portion of the workload dedicated for synchronization 

𝐶𝑆𝑦𝑛𝑐, is assumed to be 0.03 (namely, synchronization takes 3% of the workload). Note 

that 3% is quite conservative, as for certain workloads such as DMM (Dense Matrix 

Multiplication), the CPU-GPU synchronization may consume 20% of the processing 

time [60].   

As the area budget increases, the speedup of the CSIMD coprocessor exhibits 

diminishing returns caused by synchronization, because the size of the data set grows 

while the CPUSIMD bandwidth remains fixed. After sufficient area becomes 

available the speedup saturates. For smaller total area, the speedups of the AP and 

GP-SIMD are lower than the speedup of the CSIMD coprocessor. The breakeven point 

lies around 14𝑚𝑚2 for the GP-SIMD. Diminishing returns affect the GP-SIMD and AP 

speedups to a lesser extent than in the CSIMD, since they only occur when the data 

set does not fit into the internal memory array. Following [62], to emphasize this effect, 

and for illustrative purpose only, we assume that the data set size grows with the GP-

SIMD and AP size respectively, and up until 𝐴𝑇𝑜𝑡𝑎𝑙 = 25𝑚𝑚2  (at which point, 𝑛𝐺𝑃𝑆𝐼𝑀𝐷 =
 1.0 × 106 and 𝑛𝐴𝑃 = 5.3 × 105) the GP-SIMD and AP internal memory array have just 

enough space to hold all necessary program variables. However, from that point on, 

both processors will have to exchange additional data with, for example, an external 

DRAM. We assumed that for each additional processing unit beyond 𝐴𝑇𝑜𝑡𝑎𝑙 = 25𝑚𝑚2, a 

single 32b data-word per 300 additional processing units will incur synchronization 

delay. These assumptions cause the GP-SIMD and AP speedup to saturate as well. 

Note that without this assumption, both GP-SIMD and AP Speedup would have 

continued to climb linearly with area. 

The results show that at 𝐴𝑇𝑜𝑡𝑎𝑙 = 25𝑚𝑚2  (just prior to saturation), the GP-SIMD 

provides speedup of 5.5× over the CSIMD, and 7× over the AP. The speedup factor over 

CSIMD continues to grow till the GP-SIMD saturates at 𝐴𝑇𝑜𝑡𝑎𝑙 = 40𝑚𝑚2.  
 

 
Figure 15. Analytical results under constrained area: (a) Speedup (b) Energy (c) Speedup / Energy ratio 

 

Energy vs. area is shown in Figure 15 (b). Energy of both GP-SIMD and AP is lower 

than that of the CSIMD processor. Note that even when the speedups saturate, energy 

continues to grow with area, due to addition of processing units and leakage. The 

speedup/energy ratio vs. area is shown in Figure 15(c). For the CSIMD processor, the 

speedup/energy ratio eventually drops because the speedup saturates while energy 

continues to grow with increasing area. As CSIMD’s speedup saturates, both GP-SIMD 

and AP yield better speedup/energy ratios. With further area growth, the 

speedup/energy ratio of both the GP-SIMD and AP drop due to assumed saturation.  

In general, GP-SIMD achieves higher performance than CSIMD due to CSIMD 

stalling on synchronization. GP-SIMD achieves higher performance-per-area than AP 

due to its lower memory cell area (~2x), allowing the integration of twice the amount 
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of PUs and memory rows per a given area, and its faster floating point implementation 

(~3.5x) due to GP-SIMD arithmetic PU vs. associative-only PU of AP.  

 GP-SIMD Cycle-Accurate Simulation 

We verify our analytical model findings using a home-grown cycle-accurate 

simulator of GP-SIMD. Following [63] and [62], four workloads have been selected for 

performance and energy consumption simulations: 

 𝑁-point Fast Fourier Transform (FFT) 

 𝑁-option pairs Black-Scholes option pricing (BSC) 

 𝑁-point Vector Reduction (VR)  

 Dense Matrix Multiplication  of two √𝑁×√𝑁 matrices (DMM) 

where 𝑁 is the data set size, scaled for simplicity to the processor size (following the 

methodology suggested in  [24] and [62]), i.e. 𝑁 = 𝑛𝐺𝑃𝑆𝐼𝑀𝐷. Note that simulations do not 

cover the cases where the data size exceeds the size of the processor (requiring data 

synchronization).  

The workloads are hand-coded for the simulations. For FFT, we use optimized 

parallel implementation outlined in [50]. For 𝑁 point FFT, the sequential computing 

time is 𝑂(𝑁 log 𝑁). For 𝑁 PU parallel implementation, computing time is reduced to 

O(log 𝑁). Following each computing step, 𝑁 intermediate results need to be exchanged 

among the PUs. We thus assign each multiply-accumulate operation to a single PU. 

For Black-Scholes (BSC), we used a direct implementation, based on formulation 

in [11]. With sequential computing time of 𝑂(𝑁), Black and Scholes option pricing 

requires no interaction between separate option calculations (Black and Scholes option 

pricing is an example of an ‘embarrassingly parallel’ task). We thus assign a single PU 

to handle a single call option of a single security at a single strike price and a single 

expiration time. Vector reduction (VR) is implemented using the software reduction 

tree where a single PU retains a single vector element. For √𝑁 × √𝑁 dense matrix 

multiplication (DMM), the sequential execution time is 𝑂(𝑁3 2⁄ ) . One possible 

implementation utilizes 𝑁 PUs, yielding parallel execution time of 𝑂(√𝑁), with N data 

elements being shifted every step [50]. The DMM uses the hardware reduction tree to 

accelerate vector summation. 

The simulator is cycle based, keeping records of the state of each register of each 

PU, and of the memory row assigned to it. Each command (for example, floating point 

multiply) is broken down to a series of fine-grain single bit PU operations. In a similar 

manner to SimpleScalar [14], the simulator also keeps track of the registers, buses and 

memory cells that switch during execution. With the switching activity and area power 

models of each baseline operation detailed in TABLE 3, the simulator tracks the total 

energy consumed during workload execution. We follow the area assumptions detailed 

in TABLE 3, and simulate speedup and power for growing datasets corresponding to 

growing number of PUs and hence growing total area. 

Cycle-based simulated speedup is presented in Figure 16(a); speedup is defined in 

(20). Energy consumption is shown in Figure 16(b), with DMM being the most energy 

hungry benchmark. Figure 16(c) depicts the speedup/energy ratio. Note the small 

discontinuities in FFT and VR charts, which are due to the fact that these algorithms 

are designed for specific data sizes (N integral power of 2). DMM shows the worst 

speedup/energy over all workloads. As BSC is an embarrassingly parallel workload, its 

speedup/energy ratio remains practically constant with growing data set size and area.   
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Figure 16. Simulation results: (a) Speedup (b) Energy (c) Speedup / Energy ratio, for FFT, Black-Scholes, vector reduction 

and dense matrix multiply algorithms 

We should emphasize that these results were obtained through analytical modeling 

and cycle-accurate simulation; they have yet to be validated through real 

measurements on fabricated circuits. 

 CONCLUSIONS 

GP-SIMD is a novel processor architecture that combines a general purpose 

sequential processor, a massively parallel SIMD array, and a large memory shared by 

both processors. The shared memory may be accessed simultaneously by the sequential 

processor (providing a row address and accessing the data columns) and by the SIMD 

processor (providing a column address while each processing unit, PU, accesses a 

memory row). Thus, data do not need to be transferred (synchronized) back and forth 

between separate memories of the two processors.  

GP-SIMD is compared with two other massively parallel, processing-in-memory 

(PIM) architectures: Conventional SIMD (CSIMD) employing separate memories for 

the SIMD and sequential processors and requiring data synchronization (the SIMD 

array comprising a moderate number of FPUs, a-la GPU), and an Associative Processor 

(AP) combining storage and processing in each cell. Comparison is made by means of 

analytical study, and a cycle-accurate simulator is employed to validate performance 

and energy of four benchmarks on GP-SIMD. 

GP-SIMD speedup grows faster with area than that of CSIMD due to finer 

granularity of its processing unit, resulting in more processing units per equivalent 

area. GP-SIMD speedup also grows faster with area than that of the Associative 

Processor due to the finer granularity of its storage elements, resulting in larger 

memory per equivalent area. Unlike CSIMD, the performance of GP-SIMD depends on 

the data word-length rather than data set size. As area budget grows beyond the 

speedup breakeven point, the GP-SIMD’s energy remains below that of the CSIMD 

coprocessor, and it thus outperforms CSIMD in terms of speedup/energy ratio over a 

broad spectrum of area and power budget for workloads with high data-level 

parallelism. In general, GP-SIMD achieves higher performance than CSIMD due to 

CSIMD stalling on synchronization. GP-SIMD achieves higher performance-per-area 

than AP due to its lower memory cell area, allowing the integration of twice the amount 

of PUs and memory rows per given area, and its more than twice faster floating point 

implementation due to GP-SIMD arithmetic PU vs. associative-only PU of AP. GP-

SIMD however is not universally efficient. While yielding high speedup when 

implementing fine-grain massively data-parallel workloads (such as sparse linear 

algebra and machine learning algorithms), its efficiency is much lower under 

workloads with low data-level parallelism.   

To conclude, GP-SIMD architecture achieves significantly higher performance on 

large sets at lower power consumption over other parallel on-chip architectures. GP-

SIMD is thus an efficient and noteworthy solution for the implementation of machine 

learning algorithms. 
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