
Form Method Syst Des

DOI 10.1007/s10703-006-7843-9

A predictive synchronizer for periodic clock domains

Uri Frank · Tsachy Kapshitz · Ran Ginosar

Published online: 3 May 2006
C© Springer Science + Business Media, LLC 2006

Abstract An adaptive predictive clock synchronizer for systems on chip incorporating mul-

tiple clock domains is presented. The synchronizer takes advantage of the periodic nature

of clocks in order to predict potential conflicts in advance, and to conditionally employ an

input sampling delay to avoid such conflicts. The result is conflict-free synchronization with

maximal throughput and minimal latency. The adaptive predictive synchronizer adjusts au-

tomatically to a wide range of clock frequencies, regardless of whether the transmitter is

faster or slower than the receiver. The synchronizer also avoids sampling duplicate data or

missing any input. A novel method is presented for formal treatment of synchronizers and

metastability. Correct operation of the synchronizer is formally proven and verified.

Keywords Clock synchronization . Predictive synchronizer . Systems on chip (SoC) .

Formal verification . Multiple clock domains (MCD) . Metastability

1. Introduction

Large systems on chip (SoC) typically contain multiple clock domains. Inter-domain com-

munications require data synchronization, which must avoid metastability while typically

facilitating low latency, high bandwidth, and low power safe transfer. The synchronizer must

also prevent missing any data or reading the same data more than once.

Communicating clock domains can be classified according to the relative phase and fre-

quency of their respective clocks [1–3]. Heterochronous or periodic domains operate at

nominally different frequencies, plesiochronous domains have very similar clock frequen-

cies, multi-synchronous domains have the same clock frequency but a slowly drifting relative

phase, and mesochronous domains have exactly the same frequency.

The simplest solution for inter-domain data transfer is the two-flip-flop synchronizer [1,

4, 5]. The main problem with that synchronizer is its low throughput: typically, a complete

U. Frank · T. Kapshitz · R. Ginosar (�)
VLSI Systems Research Center,
Technion—Israel Institute of Technology, Haifa 32000, Israel
e-mail: ran@ee.technion.ac.il

Springer

Form Method Syst Des

transfer incurs waiting about one to two clock cycles at each end, and the next transfer

cannot start before that handshake is complete. Although it is a very robust solution, it is

sometimes misused or even abused in an attempt to reduce its latency [6].

Another commonly used synchronizer is based on dual-clock FIFO [1, 7]. In certain situ-

ations, especially when a complete data packet of a pre-defined size must be transferred, this

may be an optimal solution. Another advantage is that synchronization is safely contained

inside the FIFO, relieving designers of the communicating domains of this delicate design

task. The main drawback of FIFOs is their one-to-two cycle latency that is incurred when the

FIFO is either full or empty, and that scenario is highly typical with periodic clock domains

where the clock frequencies are different.

Mesochronous synchronizers are described in [1, 3, 8, 9]. A rational clocking synchro-

nizer for a special case of periodic domains in which the two clocks are related by the ratio

of two small integers is described in [10]. Another synchronizer for a limited case of pe-

riodic domains is described in [11]. A plesiochronous synchronizer is proposed in [12]. It

incorporates an exclusion detection controlling a multiplexer that selects either the data or a

delayed version of it. While having a low latency and a “duplicate and miss” algorithm for

the plesiochronous case, it is inapplicable to periodic domains. Another predictive synchro-

nizer for plesiochronous domains is presented in [13]. It predicts the transmit clock behavior

compared to the receive clock in advance. Using this data an “unsafe” signal is produced to

control data latching.

Dally and Poulton [1] suggest a predictive synchronizer for periodic clock domains in

which two versions of the data are latched and selected according to the output of a phase

comparator that compares the two clocks. The circuit is non-adaptive, requiring advanced

knowledge of the two frequencies, and does not handle missed or duplicate data samples.

We investigate Adaptive Predictive Synchronizers for low-latency and maximum through-

put bridging of periodic domains where the two frequencies are unknown in advance at de-

sign time and may also change from time to time. Such synchronizers are also suitable for

other types of domain relationships. In particular, predictive synchronizers are designed for

high performance minimal latency transfer of data almost every cycle (of the slower clock).

The synchronizers must prevent missing any data or sampling the same data more than once.

In Section 2 we describe the problem and introduce the predictive synchronizer. The prin-

cipal component of the synchronizer is presented in Section 3, and we analyze its exposure

to the risk of metastability in Section 4. Data coherency is studied in Section 5. In Section 6

we discuss model-checker based formal verification of the synchronizer.

2. Synchronizer overview

Consider high bandwidth data sent from a transmitter clock domain to a receiver domain.

The data lines change state simultaneously with the rising clock of the transmitter domain,

and the transmitter clock is sent to the receiver together with the data, serving as a “data

valid” or “ready” signal (this is also termed “source synchronous” data transfer). Metasta-

bility may happen at the receiving end if the receiver (sampling) clock rises simultaneously

with any change of the received data.

The Two-Way Adaptive Predictive Synchronizer (Fig. 1) synchronizes bi-directional com-

munications between two periodic clock domains (‘Left’ and ‘Right’). The synchronizer re-

ceives the two clocks, and manages safe data transfers both ways. It produces SEND and

RECV control outputs to both domains, indicating when it is safe to receive and send new

data on both sides, avoiding data misses and duplicates due to mismatched clock frequencies.

Springer

Form Method Syst Des

Right RECV
Right CLOCK

Right SEND

Left RECV

Left CLOCK
Left SEND

E
N

E
N

Right RxCK

Left RxCK

Predictive
Synchronizer

Fig. 1 A two-way predictive synchronizer with miss and duplicate protection

Right
Keep-Out

Control

Right
S - R

Circuit

Right RECVLeft SEND

Left
Clock

Right
Clock
Select

Right RxCK

Right Keep-Out

Left
Keep-Out
Control

Left
S - R
Circuit

Left RECV Right SEND

Right
Clock

Left
Clock
Select

Left RxCK

Left Keep-Out

Fig. 2 Architecture of the two-way predictive synchhronizer

Figure 2 shows the internal structure of the two-way predictive synchronizer. Since it is

symmetric, we consider only one half of it, the part that moves data from Left to Right.

We adopt the term “Local Clock” for the receiver’s clock (the Right Clock in this case) and

“External Clock” for the sender’s (Left) clock.

Clock conflicts can be predicted in advance, thanks to the periodic nature of the two

clocks. Let TLOCAL and TEXT be the clock periods of the receiver (local) and transmitter

(external) clocks, respectively. Let’s assume that we have a conflict at time zero. The next

conflict occurs when an integral number of cycles of the local clock span the same time as

an integral number of cycles of the external clock, namely there should exist some N and K
such that:

N × Tlocal = K × Text. (1)

Springer

Form Method Syst Des

Local clock

External clock

Predicted clock

Keep Out

RxCK

dC

TKO

dC

dZ
dZ

Fig. 3 A conflict is predicted one cycle in advance, delaying input sampling

The imminent conflict can be predicted as follows. Let’s find the smallest � such that

Tlocal + � = M × Text (2)

where M is an integer. Then, subtract TLOCALfrom each side of (1) and substitute (2):

(N − 1) × Tlocal = K × Text − Tlocal

(N − 1) × Tlocal = (K − M) × Text + �

Thus, conflict prediction is achieved by creating a Predicted Clock, which is a version of

the external clock delayed by �. The Predicted Clock and the local clock will now conflict

one TLOCAL cycle before the imminent conflict of the external and local clocks, allowing

us to predict it. This is demonstrated in Fig. 4. A d-conflict is defined as the simultaneous

occurrence of two clocks within time interval d of each other. Thus, when a dC-conflict is

detected between the local and predicted clocks, we know that one (local) cycle later there

is going to be a dZ-conflict between the local and external clocks (dC and dZ are explained

below). Hence, sampling of the input (which is affected by RxCK) is delayed by a keep-out

time TKO, where TKO > dZ.

Conflict prediction is performed in the Keep-Out Control, and is described in detail in

Section 3. Detection of clock conflicts may lead to metastability, as discussed in Section 4.

In addition to conflict resolution, the synchronizer must also assure data coherency. When

the receiver is slower than the sender, it may occasionally miss a data item, and the sender

must be stalled in such cases to prevent data misses. Conversely , when the receiver is faster,

it must be stalled to avoid reading the same data item twice. This is controlled by the S-R
Circuit, as described in Section 5.

Clk1

Clk2

Clk1 > Clk2

Clk1 < Clk2

Conflict

d

d

FF1

FF2

FF3

FF4

Fig. 4 d-conflict detector

Springer

Form Method Syst Des

dL- Conflict
detector

Delay
Control

Delay
CountClock

Divider

TLOCAL

TLOCAL
Delayed
Clock

IN

Local
Clock

OUT

Half Clock
Freq

Increase (ck1 > ck2) / Decrease (ck1 < ck2)

Fig. 5 The adjustable TLOCAL

delay line

3. Synchronizer structure and operation

In this section we describe the structure and operation of the synchronizer. Three different

versions of a conflict detector are employed, so we start by describing it in Section 3.1. The

synchronizer is capable of handling dynamic clock frequency scaling, thanks to adaptive

computation of the local clock cycle (Section 3.2). The unit that computes the predicted

clock is shown in Section 3.3, and the complete structure is discussed in Section 3.4.

3.1. The conflict detector

The d-conflict detector determines that two events (pre-specified rising signal transitions)

either occur within d time of each other, or that one precedes the other. Figure 4 shows a

conflict detector circuit. Flip-flops FF1 and FF2 effectively sample Clk2 d time after and

d time before the rising edge of Clk1, respectively. Either FF may become metastable. In

this circuit, one half cycle (of Clk1) is allotted for metastability resolution (as discussed in

Section 4). Following the resolution interval, the outputs of FF1 and FF2 are sampled by FF3

and FF4, respectively. If Clk2 has risen during the 2d detection period, the top AND gate

is enabled and Conflict output is generated. In other cases, the other outputs signal which

input event happened first.

In Section 4 we analyze the susceptibility of the d-conflict detector to metastability. In

particular, we define safety and show that the d-conflict detector safely detects conflicts.

This property is used in the following sub-sections.

3.2. Computing the clock cycle time

A “TLOCAL” circuit (Fig. 5) contains an adaptive delay line that is dynamically tuned to the

cycle time of the local clock. It employs programmable delay lines that consist of simple

digital tapped inverter chains [9, 14]. This circuit starts with a minimal delay and increases

(or decreases) the delay until it is equal to a full cycle. The clock divider and flip-flop provide

a loop delay (of two local clock cycles) until the lower programmable delay line has had time

to adjust to a new value and the dL-conflict detector has responded to that new value. The

time resolution dL of the conflict detector must be larger than the adjustment step of the

delay line (typically, the delay step is about two gate delays, and dL is made at least four

gate delays). Once the lower delay line has converged to TLOCAL, its programming code is

copied to the upper delay line. Thereafter, the circuit tracks changes in the cycle time (by

means of the Increase and Decrease signals).

Theorem 1. The TLOCAL unit safely computes TLOCAL with precision ±dL.

Springer

Form Method Syst Des

Proof: The delay line is increased from zero delay and until the dL-conflict detector safely

indicates a conflict between the local clock and its delayed version. Since the dL-conflict

detector can only determine that its two inputs are simultaneous within a window of dL, the

precision of the delay is no better than ±dL. �

The TLOCAL unit converges to the cycle time of the local clock as follows. The minimum

step by which the delay line can be increased or decreased is q . The delay line starts from

zero and increases the delay by steps of size q (clearly, q must be shorter than dL) up to the

complete local cycle time, taking �TLOCAL/q� steps. Each step takes two local clock cycles,

and thus the total convergence time of the DLL is �TLOCAL/q� × 2 × TLOCAL.

3.3. The clock predictor

The adaptive clock predictor (Fig. 6) improves on the original design of Dally and Poulton

[1]. It comprises two adjustable delay lines: The TLOCAL circuit of Fig. 5, and a � delay line.

The feedback circuit adjusts the � programmable delay line (cf. Eq. (2)) so that the two

inputs to the dP-conflict detector rise within dP time of each other. The “predicted clock”

output provides a copy of the external clock one local cycle time in advance. Once adjusted,

the clock predictor tracks any delay variations to within the precision limit of ±(dL + dP),

as proven below.

The loop delay in the adaptive clock predictor (the delay between successive steps of

delay adjustment) must be the maximum of the two clock cycles. Since it is unknown in

advance which clock is slower (either the external or the local clock), the rate reducer (Fig. 7)

waits for at least one cycle of each, synchronizing to each clock in turn by means of two flip-

flops. Metastability analysis of the rate reducer is similar to that of the conflict detectors, and

is deferred to Section 4.

The delay introduced by the rate reducer between successive adjustments of

Programmable Delay 1 (two passes around the circle in the rate reducer) is

4TLOCAL + 4TEXTERNAL (in the worst case). Programmable Delay 1 must be tuned to a

total delay of ε = �K/N� × TEXTERNAL − TLOCAL (as in Section 2). Since each time the

delay is increased only by q , the number of steps required to tune Programmable Delay 1

is (�K/N�×TEXTERNAL−TLOCAL)
q . As the delay between successive steps is determined by the rate

reducer, the total tuning time for Programmable Delay 1 is

(�K/N� × TEXTERNAL − TLOCAL)

q
× 4(TLOCAL + TEXTERNAL)

dP- Conflict
detector

Rate
reducer

Predicted
Clock

Local
Clock

External
Clock

TLOCAL

Increase (ck1>ck2) / Decrease (ck1<ck2)

Fig. 6 Adaptive clock predictor

Springer

Form Method Syst Des

External
Clock

Local
Clock

Output

Fig. 7 Rate reducer

KEEP
OUT

CLOCK
PREDICTOR

dC - CONFLICT
DETECTOR

Keep-Out Control RxCK

External
Clock

Local
Clock

Predicted
Clock

Clock
Select

T
K

O

Fig. 8 Keep-Out Control and Clock Select

The total adaptation time comprises the above expression plus the convergence time of

the TLOCAL delay line, (TLOCAL/q) × 2 × TLOCAL.

Theorem 2. The Clock Predictor safely generates a delayed version of the external clock
that periodically precedes its original version by TLOCAL with precision ± (dL + dP).

Proof: The two delay lines in Fig. 6 are increased from zero delay and until the dP-conflict

detector safely indicates a conflict between the external clock and its delayed version. Since

the dP-conflict detector can only determine that its two inputs are simultaneous within a win-

dow of dP, the precision of the delay is no better than ± dP. According to Theorem 1. The

Predicted Clock output is generated so that there is a delay of TLOCAL ± dL between it and the

dP-conflict detector. Thus, the Predicted Clock rises TLOCAL ± (dL + dP) prior to the origi-

nal version of the external clock. �

3.4. Conflict prevention circuits

The Keep-Out Control and Clock Select are shown in Fig. 8. The dC-conflict detector pro-

duces the Keep-Out signal upon a dC conflict of the local and predicted clocks. Keep-Out

is valid from one (local clock) half cycle time before the rising edge of the sampling local

clock and until one half cycle later (see Fig. 3). The Clock Select circuit produces RxCK

depending on Keep-Out. Thus, RxCK is either the original local clock (when there is no

predicted conflict) or the TKO delayed local clock (when a conflict is predicted).

The original intent of the synchronizer (Fig. 3) is to assure at least dZ separation between

any change in the data and sampling by the receiver. That separation provides both for the

setup and hold constraints for sampling the input data (dS = max(tSETUP, tHOLD), accounting

also for any clock jitter) and the settling time dF of the S-R circuit (see Section 5 below).

Thus, dZ = max (dS, dF). To achieve that goal, conflict prediction must allow for any

uncertainties in delays as well as for dZ, as follows.

Springer

Form Method Syst Des

Definitions

L1: A rising edge event of the local clock.

L2: A rising edge event of the local clock immediately succeeding L1 (namely, L2

succeeds L1 by one TLOCAL).

P: A rising edge event of the predicted clock.

E: A rising edge event of the external clock.

tX : Time of event X.

Also, select dC such that dC > dL + dP + dZ. Then,

Theorem 3. If L2 and E occur within dZ time of each other, then L1 and P safely occur
within dC of each other.

Proof: Consider Fig. 9, which demonstrates Theorems 1 and 2, the conflict windows and

the event definitions.

Given,

|tL2 − tE | < d Z

Also, according to the definition,

tL2 = tL1 + TLOCAL

and according to Theorem 2,

tE = tP + TLOCAL ± (d L + d P)

Substituting:

|tL1 + TLOCAL − (tP + TLOCAL ± (d L + d P))| < d Z
|tL1 − tP | < d Z + d L + d P
|tL1 − tP | < dC

TLOCAL

dC

Predicted

External

Local

time

P E L2

TLOCAL±
dL

±dP

L1

dC

dZ
dZ

Fig. 9 Prediction timing diagram

Springer

Form Method Syst Des

�

Consequently, if L1 and P do not occur within dC time of each other, then L2 and E will

be separated by at least dZ.

Now, consider the remaining case when L1 and P occur within dC (namely, there is a

conflict and Keep-Out = 1 during L2), but L2 and E are separated by more than dZ. This

could lead to the danger of conflict between RxCK (which is the delayed local clock during

that cycle) and the external clock. We now show that, with a proper selection of TKO, that

conflict does not happen.

Definition

R: The rising edge event of RxCK.

D: Event R when Keep-Out = 1.

Theorem 4. If L1 and P occur within dC time of each other, then D and E are safely sepa-
rated by at least dZ of each other.

Proof: Given that

|tL1 − tP | < dC, (3)

We need to confirm that

|tD − tE | > d Z .

By definition,

tD = tL2 + TKO.

Substituting the expressions for tL2 and tE from the proof of Theorem 3:

|tL1 + TLOCAL + TKO − (tP + TLOCAL ± (d L + d P))| > d Z
|tL1 + TKO − tP | > d Z + d L + d P
|tL1 + TKO − tP | > dC

Examining one direction of the inequality,

TKO > dC − (tL1 − tP)

and given (3) this inequality is satisfied if

TKO > 2dC.

The other direction of the inequality yields irrelevant negative constraints on TKO. Thus,

as long as TKO is selected larger than 2dC, the theorem holds. Note also that TKO <

1/2 TLOCAL because Keep-Out is valid only until one half (local) clock cycle after L2 (see

Fig. 3). �
Springer

Form Method Syst Des

In conclusion, a dC-conflict leads to Keep-Out=1 during L2, so that RxCK is the delayed

local clock, and lack of dC-conflict leads to Keep-Out = 0 during L2 and RxCK is the

non-delayed local clock. This can be formalized as the following theorem (easily provable):

Theorem 5. R and E are safely separated by at least dZ time of each other.

4. Metastability of the conflict detector

In the design presented in Section 3 above, most interactions of the two clocks (local and

external) are contained inside conflict detectors. Hence, those conflict detectors may be

subject to metastability. A d-conflict detectormay become metastable if its two input clocks

rise about d time apart from each other. The conflict detector of Fig. 4 allows one half clock

cycle for metastability resolution, and we now assess the reliability of that design.

Definition. A metastable flip-flop resolves when the value stored in the flip-flop is set

non-deterministically to either 1 or 0, and all combinational functions of that value have

been evaluated. The time to resolve a metatsable flip-flop is indeterminate and unbounded.

Definition. A circuit is said to fail if a combinational function of the output of a metastable

flip-flop of that circuit is sampled by another flip-flop before the metastable flip-flop has

resolved.

Definition. A circuit is M-safe if the expected time between two successive failures ex-

ceeds M (we use the term “safe” for short; M is also known as mean time between failures,

MTBF).

Theorem 6. A d-conflict detector is M safe.

Proof: The asynchronous input (Clk2 in Fig. 4) goes only into the first two flip-flops. Their

outputs are sampled either TClk1/2 or TClk1/2 – d later. If the basic FO4 inverter delay of

the implementation technology is g, the clock cycle is T= 2k × g, and d = m × g. Let’s

assume that τ ≈ g and W ≈ 2g. Then (following [4], where the minimal resolution time is

TClk1/2–d):

M = e
(T

2
− d)

/
τ

W FC FD
= e

(k−m)g
g

2d × 1
2kd × 1

2kd

= 2k2dek−m

�

For instance, in SoC (according to the ITRS [15]) 2k ≈ 160. If we set m =10 and choose

an implementation technology of 0.18 μm where g ≈ 50 picoseconds, then

M = 2 × 802 × 50ps × e70 ≈ 1016 years.

M improves with modern technologies, where g is lower than 50 ps. In high-performance

digital chips (such as microprocessors), the clock cycle is much shorter, e.g. 2k = 20. To

achieve reasonably high M in these cases, a different conflict detector design may be needed

in which additional resolution stages are added. For instance, the conflict detector in Fig. 10

Springer

Form Method Syst Des

Clk1

Clk2

d

d

Clk1 > Clk2

Clk 1 < Clk2

Conflict

Fig. 10 Conflict detector for very fast clocks

may be employed when resolution time of 1.5 clock cycles is needed. The predictive syn-

chronizer in such a case must be redesigned to predict the conflict two local clock cycles in

advance, rather than one.

The only other component of the synchronizer that may become metastable is the rate

reducer (Fig. 7). However, that circuit allows a complete cycle time for metastability reso-

lution. Thus, its MTBF is ek times that of the conflict detector.

Thus far we have shown that potentially metastable circuits in the synchronizer resolve

before they are sampled (namely they do not fail) with probability that can be made as

high as desirable. However, a metastable FF resolves non-deterministically to either 0 or 1.

When that happens in either the dL or the dP-conflict detectors, the only effects are potential

extension of convergence time or small variations in the timing of the predicted clock (where

the time precision is limited to ±(dL + dP)) while tracking the delays. The effect of this

non-deterministic outcome in the dC-conflict detector is discussed in Section 5 below.

5. Avoiding misses and duplicates

When the transmitter clock is faster than the receiver’s, the transmitter cannot send new data

every cycle or else some data values will be missed by the receiver (Fig. 11). Conversely,

when the receiver uses a faster clock, it cannot sample the input every cycle or else it will

sample the same data more than once (Fig. 12).

The complete two-way predictive synchronizer provides control signals to avoid missed

and duplicate data. The SEND signal guarantees (when low) that a fast sender will keep its

output unchanged until it is sampled, and the RECV signal stops (when low) a fast receiver

from using the same data more than once. Figure 13 specifies the algorithm that generates

SEND and RECV in terms of a Signal Transition Graph (STG), where “+” and “−” mean

rising and falling edge events, respectively. RECV is set upon event E (new data is available)

and reset by event R (the new data has been sampled). SEND is simply the opposite of

Local Clock

External Clock

a b cInput Data

Fig. 11 Miss condition

Local Clock

External Clock

a b cInput Data

Fig. 12 Duplicate condition

Springer

Form Method Syst Des

RECV+
SEND-

RECV-
SEND +

R : RxCK + RxCK -

RxCK = 0

RxCK = 1

Ext = 1

Ext = 0

E : Ext +Ext -

Fig. 13 SEND and RECV
control STG (double arrows are
probe arcs: the transition happens
if the place holds a token)

1 D Q

Q

CLR#

1 D Q

Q

CLR# RECV

SEND

External
Clock

RxCK

Fig. 14 Duplicate and miss
control circuit

A B C

A B C

Local Clock

External Clock

RxCK

RECV

SEND

Data Sent

Data Received

Fig. 15 Fast receiver waveforms

A B C

A B C

Local Clock

External Clock

RxCK

RECV

Data Sent

Data Received

SEND

Fig. 16 Fast sender waveforms

RECV. The STG is implemented, for instance, by the circuit of Fig. 14 [16]. An example

waveform of a fast receiver is given in Fig. 15 and a fast sender scenario is shown in Fig. 16.

The SR circuit requires a minimum time separation of the E and R events, in order to

allow time for the following sequence of events: R → Q1+ → RECV– → Q1– → E (Q1 is

a self resetting signal). This settling time was defined as dF in Section 3 above.

Springer

Form Method Syst Des

Since events E and R never conflict (Theorem 5), metastability cannot occur in the

S-R circuit. Still, when the predicted and external clocks rise within dC time of each other,

the dC-conflict detector may become metastable and resolve non-deterministically so that

Keep-Out is either 0 or 1. This fact does not hamper correct operation, because in either

case the minimum separation of dF between E and R is preserved, as implied by Theorems

3 and 4. However, it may result in reduced performance, especially when the two clock

frequencies are the same and Keep-Out happens to oscillate due to repeating metastability

events.

6. Formal verification of the predictive synchronizer

We employ model checking for formal verification of certain properties of the synchronizer

[17, 18]. In general, model checking requires three components (an HDL description of the

circuit, a definition of the environment, and a set of temporal logic rules on permitted event

sequences) and verifies that the rules always hold. When applied to a synchronizer, we also

assume that metastability issues are handled properly (e.g. as in Section 4), and a circuit that

may become metastable resolves non-deterministically to either logic 1 or 0 [19].

The model checker performs checks that are separated by “ticks,” where each tick is

a single sequential step (and no metric time measure is associated with the ticks). In all

cases below we model the two clock cycles (local and external) by means of ticks with

one-tick uncertainty: TLOCAL = (either m or m + 1) ticks, and TEXT = (either n or n + 1)

ticks.

The following properties of the predictive synchronizer were verified: The synchronizer

correctly predicts a conflict one (local) cycle in advance (Section 6.1), it correctly generates

a Keep Out signal (Section 6.2), the S-R unit correctly generates the SEND and RECV

signals (Section 6.3), and data is transferred correctly and coherently between the two clock

domains (Section 6.4). Note that all verifications apply to an already-calibrated synchronizer

(namely, the programmable delay lines in the clock predictor are in a stable state).

6.1. Correct conflict prediction

Conflict prediction is formally defined as the property proven in Theorem 3 (if L2 occurs

within dZ time of E, then L1 has occurred within dC time of P) or its equivalent form (if L1

has not occurred within dC time of P, then L2 should not occur within dZ time of E). This

metric time property is converted into a rule over a sequence of events as follows. We model

the independent delays dS, dF, dL and dP as a single tick each. Since dZ = max(dS, dF) and

dC > dL + dP + dZ (as discussed in Section 3), we model dC by 4 ticks. The rule can be

specified as follows (in a pseudo-temporal logic notation):

Rule CP: {[∗], !P[3], L & !P, !P[3]}→ {!L[∗], !L & !E, L & !E, !E}

In words, if we observe seven consecutive ticks with no P events and with an L event in

the fourth tick, then the next L event will be preceded and succeeded by ticks with no E

event. This rule must hold in all possible event sequences in the circuit. Thus, if the model

checker checks the implementation and finds a possible scenario where the right hand side

of Rule CP fails (both L and E occur within one tick of each other) but the left hand side

holds (P and L are separated by at least 4 ticks), then the clock predictor (which produces

P) is incorrectly implemented.

Springer

Form Method Syst Des

RECV+
SEND-

RECV-
SEND +

RE

Fig. 17 Simplified STG for
verification of the SR circuit

6.2. Correct keep out

Consider the following property (a derivative of Theorem 3): If L2 occurs within dZ time

of E, then Keep-Out is asserted. Following a line of argument similar to Section 6.1, we

convert that property into the temporal logic rule:

Rule KO1: {[∗], {L, E} or {L & E} or {E, L}} → Keep-Out

If the model checker finds a scenario where KO = 0 when the left hand side holds (L and E

occur within one tick of each other) then the Keep-Out circuit is implemented incorrectly.

The other direction should also be verified: If there is no L1 and P conflict, then Keep-Out

must be zero:

Rule KO2: {[∗], !P[3], L & !P, !P[3], !L[∗], L} → !Keep-Out

We can also verify that RxCK is generated correctly, namely that it never conflicts with the

external clock:

Rule RxCK: {[∗], {E, R} or {E & R} or {R, E}}(false).

6.3. Correct SEND and RECV

We now verify the operation of the SR circuit. Consider the STG of Fig. 13. The local clock

is replaced by RxCK, and we know that events E and R are verified non-conflicting (as

above). Hence, we can simplify the STG into Fig. 17. This STG can be converted into the

following rules:

Rule SEND: AG(R → !RECV & SEND)

Rule RECV: AG(E → RECV & !SEND)

where AG stands for “always global.”

The model checker fails when trying these rules on the circuit of Fig. 14. This is due to the

fact that the circuit contains a self-resetting internal signal (Q1), as discussed in Section 5,

and requires at least dF time for settling. This cannot be verified by the model checker, and

is corrected by adding a “one tick delay” in the self-reset path of the verification model of

the SR circuit.

Springer

Form Method Syst Des

6.4. Correct and coherent data transfers

We verify data transfers by considering only the data and external handshake signals (the

two clocks, SEND and RECV) and ignoring the internal operation of the synchronizer. We

check that the data gets transferred correctly, that no data is missed and no data is sampled

more than once. This verification has initially failed, leading us to define proper conflict

detection delays (dL, dP, dC) and other delays (dF, dZ), as well as their relationships, as

explained and proven in Theorems 1–4 above.

Data transfer verification is applied top a single bit of the data bus, as all the other bits

are chained to the same enabling logic. The following rules are employed:

(1) Each time bit 0 of the bus is sampled by the sender’s register (E when SEND = 1), the

next time the receiver samples that bit (L when RECV = 1) it has the same value:

∀x ∈ {0, 1}{SEND, E & bus(0) = x} → {!R[∗], !R & RECV, R & bus(0) = x}

(2) There is at least one reception between any two successive transmissions

AG({SEND, E}→ AX({RECV, R} before! {SEND, E}))

The “strong before” operator (with !) indicates that a transmission must be followed by a

corresponding reception.

(3) There is at least one transmission between any two successive receptions

AG({RECV, R}→ AX({SEND, E} before {RECV, R}))

7. Conclusions

A two-way adaptive predictive synchronizer for SoC with multiple clock domains has been

presented. The synchronizer takes advantage of the periodic nature of clocks in order to

predict potential conflicts in advance, and to conditionally employ an input sampling delay

to avoid such conflicts. The result is conflict-free synchronization with almost zero latency

(much less than one cycle). The adaptive predictive synchronizer adjusts automatically to a

wide range of clock frequencies, regardless of whether the transmitter is faster or slower

than the receiver. The synchronizer also avoids sampling duplicate data or missing any

input.

Proving the correctness of synchronizers is an elusive task. Formal logic methods are

challenged by the inconsistencies and non-determinism involved with synchronizers. We

have created a novel formal framework for the analysis and correctness proof of complex

multiple clock domain systems. Metastability is analyzed both from statistical and logic de-

sign points of view. Building on that foundation, we have been able to create correctness

proof of the synchronizer. In addition, we have shown how to apply model checking for for-

mal verification of the synchronizer design, and have discussed cases where that verification

helped us improve the design.

Springer

Form Method Syst Des

References

1. Dally WJ, Poulton JW (1998) Digital systems engineering. Cambridge University Press
2. Messerschmitt DG (1990) Synchronization in digital system design. IEEE J. Selected Areas in Commu-

nication 8(8)
3. Ginosar R, Kol R (1998) Adaptive synchronization. Proc. ICCD
4. Dike C, Burton E (1999) Miller and noise effects in a synchronizing Flip-flop. IEEE J. Solid-State Circuits

34(6):849–855
5. Kinniment DJ, Bystrov A, Yakovlev A (2002) Synchronization circuit performance. IEEE J. Solid-State

Circuits 37:202–209
6. Ginosar R (2003) Fourteen ways to fool your synchronizer. Proc. 9th IEEE Int. Symp. on Asynchronous

Circuits and Systems (ASYNC03)
7. Chelcea T, Nowick SM (2001) Robust interfaces for mixed-timing systems with application to latency-

insensitive protocols. Proc. ACM/IEEE Design Automation Conference
8. Chakraborty A, Greenstreet MR (2003) Efficient self-timed interfaces for crossing clock domains.

Proc.9th IEEE Int. Symp. Asynchronous Circuits and Systems (ASYNC’03), pp 78–88
9. Semiat Y, Ginosar R (2003) Timing measurements of synchronization circuits. Proc. 9th IEEE Int. Symp.

on Asynchronous Circuits and Systems (ASYNC’03)
10. Sarmenta LFG, Pratt GA, Ward SA (1995) Rational clocking. Proc. ICCD, pp 217–228
11. Gandhi J (2001) Apparatus for fast logic transfer of data across asynchronous clock domains. USA Patent

6,172,540
12. Dennison LR, Dennison WJ, Xanthopolous D (1995) Low-latency plesiochronous data retiming,

Proc.16th Conf. Adv. Res. in VLSI, pp 304–315
13. Stewart WK, Ward S (1988) A solution to a special case of synchronization problem. IEEE Trans. Comp

37(1)
14. Moore SW, Taylor GS, Cunningham PA, Mullins RD, Robinson P (2000) Self-ccalibrating clocks for

globally asynchronous locally synchronous systems. Proc. ICCD
15. International Technology Roadmap for Semiconductors (ITRS)(2001)
16. Cortadella J, Kishinevsky M, Kondratyev A, Lavagno L, Yakovlev A (1997) Petrify: A tool for manip-

ulating concurrent specifications and synthesis of asynchronous controllers. IEICE Trans Inform Syst
E80-D(3):315–325

17. Clarke EM, Grumberg O, Peled DA (2000) Model checking. The MIT Press
18. Beer I, Ben-David S, Eisner C, Landver A (1996) RuleBase: An industry-oriented formal verification

tool. Design Automation Conference pp 665–660
19. Kapschitz T, Ginosar R (2005) Formal verification of synchronizers. CCIT Tech. Rep. 536, EE Dept.,

Technion

Springer

