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Abstract.  Synchronization circuits are essential in multi-clock-domain 
systems-on-chip. The most well-known synchronizer consists of two 
sequentially connected flip-flops that should eliminate the propagation of 
metastability into the receiver clock domain. We first clarify how such a simple 
"two-flop" synchronizer can be used in the system, and analyze its performance, 
showing that the data cycle may be as long as 12 clock cycles. Novel faster 
synchronizers are described next and their use and improved performance are 
explained. The fast synchronizer enable shorter data cycles, measuring only 2 to 
4 clock cycles. Synchronizer performance is also analyzed when the two 
communicating clock domains are separated by long interconnect, incurring 
additional latencies. 

Keywords: Synchronization, MCD, SoC 

1   Introduction 

Systems on chip (SoC) typically integrate multiple modules that may operate at 
different clock frequencies, constituting multiple clock domain (MCD) devices. 
Multiple clock domains may be required either due to different external frequencies, 
or the integration of modules that were designed to operate on different frequencies, 
or to facilitate clock gating and partitioning of large and fast clock trees. In addition, 
frequency and voltage may also be changed dynamically in Dynamic Voltage and 
Frequency Scaling (DVFS) systems  [1]- [3], mainly to reduce power consumption. 

The mutual relationships of pairs of clock domains are classified in Table 1 
according to the frequency and phase differences of the two domains. Mesochronous 
domains share the same frequency and have a constant phase difference between 
them, which can be compensated by relatively simple synchronizers  [4] [5], e.g. by a 
small FIFO. Adaptive phase compensation can be employed to connect multi-
synchronous domains, in which the phase drifts slowly over time  [6] [7], as well as 
plesiochronous domains  [8], where a very small frequency difference can be viewed 
as a phase drift. When two different-frequency clocks are used in the periodic case, a 
predictive synchronizer foresees and prevents contentions  [9]. In the general 
asynchronous case, when the timing of input is unknown, the family of two flip-flop 
("two-flop")  synchronizers  and  two-clock  FIFOs  are  employed.  In addition,  more  



Table 1: Clock relationship classes 

Class Δφ Δf Synchronization 
Synchronous 0 0 None 
Mesochronous φC 0 Phase compensation 
Multi-synchronous drifts 0 Adaptive phase compensation 
Plesiochronous varies Δf<ε Adaptive phase compensation 
Periodic  Δf>ε Predictive 
Asynchronous   Two-Flop, 2-clock FIFO 

 
complex low-latency synchronizers that employ stoppable and locally-delayed clocks 
are also applicable for the asynchronous case  [10]- [17]. They must take into account 
additional latency due to clock tree delays  [17]- [19], may require non-standard gates, 
incur timing assumptions and may be restricted to a certain range of clock rates. 
Therefore, some applications must resort to the family of two-flop synchronizers, 
discussed in this paper. The synchronizers for the asynchronous class are universal 
because they also support all other classes. However, universal synchronizers do not 
take advantage of knowing the clock relationships and hence they are sub-optimal for 
other classes, incurring performance overhead. 
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Fig. 1: Simple four-phase synchronizer 

Synchronizers should be employed carefully, matching system requirements in 
terms of rate, latency and reliability, and avoiding common pitfalls  [20]. A simple 
synchronizer is shown in Fig. 1. The flip-flops sampling the asynchronous signals 
REQ and ACK may become metastable. One clock cycle is preserved for the 
metastability resolution, and no logic is allowed on the bold (red) arrows of Fig. 1. 
The exact time required for single synchronizer metastability resolution is derived 
from system Mean Time Between Failures (MTBF) requirement  [21]- [23]. The 
MTBF of single synchronizer is calculated according to Eq. (1), where S is the time 
preserved for metastability resolution, τ and W are technology dependent constants 
(about one and two FO4 inverter delays respectively) and FC and FD are clock and 
data frequencies respectively. When the time required for metastability resolution is 
longer than one clock cycle, additional flip-flops can be inserted before first flip-flop. 
Alternatively, when the requirement is shorter than one half clock cycle, a first falling 
edge flip-flop can be used. The receiver may also employ a READY signal, pausing 
the synchronizer when the receiver is not ready to receive (ACK signal is not returned 
until READY becomes high). In Fig. 1 we consider a simple version, which assumes 



that the receiver is always ready. In this case the cross-lined flip-flops can be omitted, 
reducing the data cycle by two receiver clocks. Additionally, the data register at the 
RX side may also be omitted. 
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The transmitter FSM and overall STG  [24] are shown in Fig. 2. Note that ‘+’ 
indicates a rising edge and ‘-‘ denotes a falling edge. The REQ is sent after input valid 
indication VI, provided that the synchronizer has finished its previous cycle (A2 is 
low). Output valid VO is pulsed for one RX cycle after a new data word has been 
received and synchronized, and sent indication SNT is pulsed for one TX cycle after 
A2 is received. 
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Fig. 2. Simple Synchronizer: Sender FSM and synchronizer STG 

The simple synchronizer enables reliable communication between two clock 
domains. Unfortunately, that synchronizer is limited to low data rates. In typical cases 
of mutually-asynchronous clocks, 6 TX cycles and 6 RX cycles are required for a 
complete and acknowledged transfer of a single word. 

Two-clock FIFOs can be employed for throughput enhancement enabling data 
transfer on each clock cycle. However, the FIFO is a more complex design that incurs 
higher data latency and does not support communications over long interconnects. In 
this paper we present novel faster synchronizers, especially in the presence of long 
wires between the transmitter and the receiver. We consider four- and two-phase 
protocols in Sect. 2 and 3 respectively, and compare their performance with that of 
the two-clock FIFO in Sect. 4. The synchronizer latency can be improved further by 
sampling multiple times and employing speculative or non-speculative voting 
 [25] [26]. 

2   Fast Four-Phase Synchronizer 

The main goal of the synchronizer is to provide sufficient time for metastability 
resolution for the first sampling flip-flop. The resolving time of the synchronizer 
should meet MTBF requirements; in Fig. 3 we show a fast four-phase synchronizer, 
which provides one clock cycle for metastability resolution. Actually, the exact time 
reserved for metastability resolution in Fig. 3 is: 



/M S ENABLE
RESOLUTION SUT T T= −  (2) 

where T is the cycle time of the sampling clock. A similar caution should be applied 
to the AND gates in the figure. 

When fast clocks are used either in the transmitter, or in the receiver, or both, a 
single cycle time may be insufficient for reliable operation. In this case the time for 
metastability resolution can be extended by inserting additional flip-flops as shown in 
Fig. 3. For finer latency optimization (e.g. when additional half cycle is required) one 
can employ flip-flops triggered by the falling edge of the clock. Alternatively, when a 
clock is slow, the time for metastability resolution can be reduced by clocking the 
ACK and REQ sample registers with the falling edge. As above, the output of the 
resolving flip-flop is marked in bold (red). These lines require special treatment to 
allow for sufficient resolution time. They should not be combined with other parts of 
the logic. While other logic may be synthesized normally, caution should be applied 
to avoid manipulation of the bold (red) lines by the logic synthesizer and physical 
design software. In particular, note that certain registers have two separate enable 
inputs: one normal and one marked in red and asterisk, which cannot be simply 
merged by logic. 

DATA

REGR
Receiver Clock Domain

REQ

ENABLE

ACK

R-DATAS-DATA

Sender Clock Domain
REGD

VO

A2

VI

TX-FSM

EN2

ENSNT

A2P

EN

ENABLE

AR

AR

R2

A2D

R2DAdditional Stages 
for High-TX rates

Additional Stages 
for High-RX rates

REGV

READY

CLR

EN

EN

 
Fig. 3: A fast four-phase synchronizer 

The operation of the synchronizer is explained by means of the STG in Fig. 4a and 
TX FSM in Fig. 4b. At the beginning, the synchronizer waits for data which is 
indicated by rising VI. The transmitter output registers (REGD and REGV) are 
enabled and will send out the new data word and REQ on the next rising edge of TX 
clock. At the receiver side, if the receiver is ready (READY is high), DATA is 
sampled by REGR and a VO pulse is generated after R2 rises. Timing of this event 
depends on metastability resolution and may be delayed by an extra clock cycle. Note 
that metastability of the first sampling flip-flop can only result in non-determinism in 
timing, and R2 is not expected to assume an illegal voltage level (except, maybe, once 
per MTBF…). The receiver then produces the rising ACK signal. Once sampled, A2 
disables TX output registers (REGD and REGV) and asynchronously resets REQ. 
The output registers stay disabled until the four-phase REQ/ACK handshake is over. 
The falling edge of R2 triggers an asynchronous de-assertion of ACK. Following the 
synchronized falling edge of ACK, the transmitter enables the next data cycle once a 
new data word is available. 

As shown in Fig. 5a, in mesochronous operation, the minimal data cycle time 
(REQ+  REQ+) is six clock cycles in the worst case (the two clocks are in phase) 
but only four clock cycles when the two clocks are out of phase (Fig. 5b). 
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Fig. 4. Fast four-phase synchronizer STG 
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Fig. 5: Mesochronous operation of the fast four-phase synchronizer:  

(a) in phase clocks (b) off-phase clocks. 

The synchronizer of Fig. 3 supports any relation between the transmitter and 
receiver clocks. When the clocks are mutually asynchronous then the data cycle 
depends largely on the slower clock. If the ratio is larger than 2, then the data cycle is 
less than three clock cycles of the slower clock. 

3   Fast Two-Phase Synchronizer 

The synchronization data-rate can be significantly improved by employing a two-
phase protocol over the channel. This is particularly important for long range commu- 



nication where wires incur additional high latency. 
When a two-phase protocol is employed, the synchronizer requires additional 

control logic. In the circuit shown in Fig. 6 ACK generation is symmetric for ACK+ 
and ACK- (no asynchronous resets).  
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Fig. 6: Fast two-phase synchronizer 

The synchronizer operation is explained by means of the STG in Fig. 7 and the TX 
FSM in Fig. 8. The time reserved for metastability resolution is shorter than in the 
four-phase synchronizer (Sect. 2) by the XOR gate delay. Note that TXS (the TX 
state) is produced by the (bold, red) synchronization circuit and hence, its toggle time 
depends on metastability resolution. The TX FSM accommodates this variability of 
toggling time. The output registers REGD and REGV are controlled by the FSM and 
by TXE (TX enable) the resolving signal from the sampling flip-flop marked in bold 
and red. 
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Fig. 7. STG of the fast two-phase synchronizer 

In mesochronous operation, the minimal data cycle time (REQ+  REQ+) is four 
clock cycles in the worst case (the two clocks are in phase), as shown in Fig. 9a. This 
data cycle is shorter (three clock cycles) when the clocks are out of phase (Fig. 9b). 
Note that the value of the non-zero phase difference in Fig. 9b has no impact on the 
data cycle. 

The synchronizer of Fig. 6 supports any timing relationship between the transmitter 
and receiver clocks. When the two clocks are asynchronous then the data cycle 
depends largely on the slower clock. In particular, Fig. 10 shows a data cycle of mere 
two clock cycles when the frequency ratio is larger than two. 
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Fig. 8: TX FSM of the fast two-phase synchronizer 
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Fig. 9: Mesochronous operation of the fast two-phase synchronizer: 

(a) clocks in phase (b) off-phase clocks 

4   Performance Comparison 

The goal of the synchronizers presented in this paper is to enhance throughput and 
latency; power and area of the synchronizers are immaterial, because only a tiny 
fraction of total power and area in typical SoCs are consumed by synchronizers. The  
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Fig. 10: Asynchronous clock domains. One clock is three times faster leading to data cycle of 

two clock cycles of the slower clock 

lower bound of the data rate of any synchronizer that employs REQ/ACK handshake 
is two clock cycles, since at least one cycle is required for metastability resolution on 
either side. When a four-phase protocol is used, the lower bound is doubled up to four 
cycles. 

The performance of the various synchronizers shown in this paper is summarized 
in Table 2. The simple synchronizer requires 12 cycles for each data transfer. When 
one of the clocks is faster, the data cycle will converge down to six cycles of the 
slower clock. The data cycles of the fast synchronizers are significantly improved 
down to four cycles in the case of fast two-phase synchronizer. The data cycle can be 
further reduced down to two clock cycles of the slower clock when the two clocks 
differ significantly in frequency. 

The data rate and latency of the synchronizers over a range of clock ratios and two 
different interconnect delays between the transmitter and receiver are shown in Fig. 
11 and 13. The results were obtained by simulations for worst case clock relations. 

Forward latency refers to the average time from asserting REQ to asserting VO. 
Fig. 11 reflects back-to-back clock domains (no delay over the interconnect) and Fig. 
12 shows an interconnect delay of one TX clock cycle. The two-clock FIFO is 
applicable only in the former case  [27]. The fast two-phase synchronizer achieves 
only half the throughput of the FIFO, and the other two synchronizers provide even 
slower data rates. Forward latencies of the simple and fast synchronizers are shorter 
than the FIFO’s. In Fig. 12, the throughput and latency depend linearly on the 
interconnect delay. Clearly, the fast two-phase synchronizer achieves that best 
throughput and latency. 

Table 2: Four-phase and two-phase synchronizers latencies 

 Simple Four-
Phase 

Fast Four-Phase Fast Two-phase 

 Best 
(off- 
phase) 

Worst 
(in- 
phase) 

Best 
(off- 
phase) 

Worst 
(in- 
phase) 

Best 
(off- 
phase) 

Worst 
(in- 
phase) 

Mesochronous Clocks 10 12 4 6 3 4 
Asynchronous Clocks 6⋅TX+6⋅RX 3⋅TX+3⋅RX 2⋅TX+2⋅RX 
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Fig. 11: Throughput and latency for no inter-modular delay 
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Fig. 12: Throughput and Latency for interconnect delay of 1.0 TX clock cycle 

4   Conclusions 

Synchronizers must be employed when transferring data across clock domain 
boundaries. Typical synchronizers may incur a heavy performance penalty. We have 
analyzed the structure and performance of simple two-flop synchronizer, and shown 
that its data cycle can take as long as 12 clock cycles. We have then presented novel 
faster designs that are based on either four-phase or two-phase protocols. The 
improved synchronizers can operate as fast as two clock cycles in certain cases. This 
improvement is accentuated when the communicating clock domains are far away 
from each other, and the delays on the interconnecting lines need to be taken into 
account; the paper presents a novel analysis of synchronizer behavior in the presence 
of long wire delays, and introduces two-phase synchronizers for minimizing the 
latency of such synchronizers. 
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