
 1

The Power of Priority: NoC based
Distributed Cache Coherency

Evgeny Bolotin, Zvika Guz, Israel Cidon, Ran Ginosar and Avinoam Kolodny

Electrical Engineering Department,Technion - Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT

The paper introduces Network-on-Chip (NoC) design

methodology and low cost mechanisms for supporting efficient

cache access and cache coherency in future high-performance

Chip Multi Processors (CMPs). We address previously proposed

CMP architectures based on Non Uniform Cache Architecture

(NUCA) over NoC, analyze basic memory transactions and

translate them into a set of network transactions. We first show

how a simple, generic NoC which is equipped with needed

module interface functionalities can provide infrastructure for the

coherent access of both static and dynamic NUCA. Then we show

how several low cost mechanisms incorporated into such a

Vanilla NoC can facilitate CMP and boost performance of a cache

coherent NUCA CMP. The basic mechanism is based on priority

support embedded in the NoC, which differentiates between short

control signals and long data messages to achieve a major

reduction in cache access delay. The low cost Priority-based NoC

is extremely useful for increasing performance of almost any other

CMP transaction (i.e. uncached and cache-coherenet R/W, search

in DNUCA, isolating low priority traffic, synchronization and

mutual exclusion support). Priority-based NoC along with the

discussed NoC interfaces are evaluated in detail using cycle-

accurate CMP-NoC simulations across several SPLASH-2

benchmarks and static web content serving benchmarks showing

substantial L2 cache access delay reduction and overall program

speedup. For further system improvements, we introduce

additional low cost NoC mechanisms that include: virtual

invalidation rings, efficient store-and-forward multicast for short

messages which is embedded within a wormhole NoC, and a line-

cache search mechanism for the efficient operation of dynamic

NUCA. These mechanisms can also expedite not only cache

coherency transactions but also other basic CMP transactions such

as search and serialization primitives support.

1. Introduction
Microprocessor architecture is transition towards multi-core

architectures that exploit thread-level parallelism, and

provide performance improvements as well as power-

efficiency. Such chip multi-processors (CMPs)[1-7] need to

employ large shared on-chip cache memory (typically a L2

cache). The cache must support parallel transactions with

multiple cores. Hence, a distributed cache, comprised of

multiple memory banks interconnected by a network on

chip (NoC)[9,31-43], as illustrated in Figure 1, is an

accepted and likely approach. In such a structure, the

effective access time to the shared cache will become a

major performance bottleneck, as both the number of cores

and the number of clock cycles required for signal

propagation across the die will increase with technology

scaling.

This architecture raises many challenges because the system

depicted in Figure 1 needs to efficiently discover the cached

location of each physical memory address and maintain

multiple data copies, while ensuring data coherency of

shared data among all the cores. Traditional snooping

protocols for cache coherency [25] are not suitable for

implementation over a NoC, and are not scalable with the

number of cores. Directory-based coherence protocols

require multiple network traversals (e.g. to search the

cached location, determine the sharing status, update or

invalidate etc.). Consequently, a CMP equipped with a

standard NoC and standard processor and cache network

interfaces may incur large delays in cache transactions.

0 7

56 63

P0 P1

P5 P4

P
6

P
7

P
3

P
2

Distributed L2

Figure 1. Modern CMP System interconnected by NoC :8 CPUs along

with L2 Cache distributed in 64 Banks

Previous CMP research mainly addressed the principal

architectural issues of distributed shared CMP cache over a

NoC abstraction [1] [2] [3] [4] [6] [7]. In the evaluation of

SNUCA and DNUCA [1] [2] the authors make simplifying

assumptions regarding network delays and behavior. They

do not evaluate any detailed NoC design or optimize the

NoC for supporting typical cache operations.

There has been substantial prior work in the area of cache

coherency optimization in the context of multiprocessors

[11-18]. The majority focused on in-protocol optimizations,

releasing consistency model and speculation

 [10] [11] [12] [13]. Some approaches combined snooping and

directory-based protocols [12]. Several studies looked into

broadcast and multicast snooping, and ring optimizations

 [14] [15] [16] [17]. In [18] the authors tried to efficiently map

a coherency protocol onto physical wires in several metal

layers, with different widths and thicknesses. The token

coherence method [19] suggests to exchange and count

tokens to control coherence permissions.

 2

Several recent papers focused on NoC–based CMP cache

coherency [21] [22] [23]. [23] explores the performance vs.

energy tradeoffs for hardware and software snoop-based

protocols in MPSoC. Their evaluation assumes a shared-

medium interconnect among processors and shows that

hardware solutions based on snooping are power inefficient.

It does not address directory based coherence schemes

which are the topic of our work.

Eisley et al. [21] addressed the cache coherency problem in

CMP and proposed to alter the standard directory-based

system by directories implemented inside NoC routers (in-

network approach). In the proposed architecture, routers

may steer requests towards nearby data copies. This

approach enables to reduce memory access delay but

requires additional storage and a more sophisticated router

architecture to perform directory-related manipulations on

every packet at every hop. An alternate solution, [22],

proposes a software solution for memory coherency in

MPSoCs. The approach relies on the programmer

intervention for mapping local and shared variables and

segments. Using uncached accesses for the shared

segments, the cache coherency and memory consistency can

be maintained at no hardware cost.

The main contribution of this paper is the introduction of

hardware based NoC priority mechanism for efficient

distributed directory-based cache-coherent access in both

static and dynamic NUCA systems, termed Priority-based

NoC. The main power of Priority-based NoC is its

simplicity, low hardware cost and its generic nature that can

extend and accelerate many other operations. The major

cache-access delay reduction is achieved by differentiating

short control messages that constitute the coherency

protocol and allowing these short messages to bypass long

data packets while preserving the coherence protocol

correctness. The same idea can apply to other common

CMP memory and synchronization transactions such as

regular (uncached) R/W, DMA and common variable

synchronizations [26]. Our solution has a very low

hardware cost and it does not impact the router architecture

as in [21]. Moreover, our approach is a complementary

solution, and can be applied to provide additional speedup

to the in-network directory of [23], or to the software

messages of [24], as well as to other cache coherence

protocols.

In addition, we describe other new NoC mechanisms and

services for a further improvement of efficient coherent

cache-access in NUCA, termed an Advanced-Services

NoC. These include virtual wormhole invalidation rings for

well-organized invalidation procedure, efficient store-and-

forward multicast for short messages which is embedded

within a wormhole NoC, and support for serialization and

mutual exclusion primitives such as locks and Test&Set.

For DNUCA based CMPs we introduce a cache-line search

optimization mechanism that is required for efficient

operation. Note that these additional mechanisms are also

generic and can be used beyond the context of cache

coherency.

The rest of the paper is structured as follows. In Section 2,

we give a short background of CMP NUCA. Then, we

analyze cache coherency memory transactions and translate

them into a set of network transactions. Then, we show how

the basic-functionality Vanilla NoC needs to be equipped

with special NoC module interfaces in order to support

cache-coherent communication of both static and dynamic

NUCA. In Section 3, we turn to introduce Priority-based

NoC and Advanced-Services NoC for boosting

performance of coherent distributed cache access and

reducing its latencies. In order to illustrate the generic

nature of our simple hardware solutions we also explain

their usage beyond the cache coherency paradigm, for

normal (uncached) R/W and for serialization primitives

support such as locks and Test&Set. In Section 4, our

Priority-based NoC is evaluated in detail using cycle-

accurate CMP-NoC simulations across several benchmarks.

Section 5 summarizes the paper.

2. CMP NUCA Background
 CMPs are shifting towards a NUCA [5], where the cache is

divided into multiple banks, and accesses to closer banks

result in shorter access times. In NUCA, performance

depends on the average (rather than worst-case) latency. To

further reduce the average access time, the authors of [5]

have suggested the use of dynamic block migration, called

Dynamic NUCA (DNUCA). In DNUCA, every access to a

block moves the block one step closer to the processor, thus

gradually reducing distances and access times to frequently-

used data. This differs from the basic Static NUCA

(SNUCA) design, where block placement is static,

determined by address.

Several works have dealt with NUCA based CMP systems

 [1] [2] [4] [7]. [1] [2] have studied both SNUCA and DNUCA

implementations for CMP. [3] [4] suggested replicating

shared blocks within the cache in order to improve their

proximity to all sharing cores. [7] achieved vicinity for

shared data by changing the common cache-in-the-middle

CMP layout and by using a designated part of the cache

capacity for shared blocks only. Using DNUCA, blocks

may reside in different locations within the cache and hence

a mechanism for locating blocks is needed. Search policies

may vary from sequentially inquiring every bank to

flooding of the interconnect in parallel, or use a hybrid

intermediate policy such as phase-multicasting [1] [5] [6].

Since the search introduces significant delays to the cache

access time and overload the interconnect, some search

hints are required to direct the search to specific banks and

accelerate detection of cache miss. [6] has leveraged bloom

filters to devise such a complexity-effective search

mechanism for CMPs.

3. NoC support for CMP NUCA
In this section we first describe a straightforward

architecture of NUCA CMP over a Vanilla NoC. We

 3

briefly describe the CMP memory architecture, basic CMP

communication infrastructure and details of directory-based

distributed coherency protocol over NoC. We also outline

common L2 cache access transactions which are translated

into multiple network transactions. We sketch the basics of

the necessary NoC communication interfaces that support

coherent cache accesses over NoC.

Then we show how by using a Priority-based NoC which is

equipped with a simple priority mechanism we can

drastically decrease cache access latency and speed up the

total program running time. Finally, we outline further

possible Advanced-Services NoC mechanism for efficient

cache-access and overall CMP performance such as: special

broadcast and multicast mechanisms, ways for faster search

in DNUCA, supporting synchronization primitives in CMP

and others.

3.1 Cache-Access in NUCA over Vanilla NoC
In a CMP system such as in Figure 1 there are two levels of

cache hierarchy: shared L2-cache and private L1-caches

(within the processor cores) that maintain copies of L2 data

and may need to modify it. Therefore, we need to provide

mechanisms to keep this non-uniform memory system in a

coherent state and support sequential consistency. In other

words, we need to support total ordering among memory

transactions in the parallel system as it would be executed

on a sequential system [8].

Common snooping-based cache-coherency approaches [8]

are not suitable for NoC and are not scalable with the

growing number of nodes. Therefore, we focus on a

directory based approach. This approach eliminates the

need for using a slow and expensive shared bus or NoC

broadcast. The directory serves as a serialization point for

maintaining coherency.

We focus on a distributed directory scheme which is more

scalable than a central directory approach. In practice, the

distributed directory is implemented by extending each L2-

cache-line (block) with the directory information, which

tracks the state of this block. The directory information

contains a status vector containing the identity of

processors that store this cache-line in their L1 caches. It

also contains a modified bit to indicate that this cache line is

in modified state in one of the L1 caches. In this work we

target the four-state (MESI) write-back invalidation

protocol [8].

L2-caches and directory deal with incoming transactions in-

order for maintaining transaction consistency [8]. Since out

of-order mechanism require a considerable additional

hardware costs and protocol verification we do not address

such systems in this paper.

We assume that the network maintains the ordering of

messages for each source-destination pair. Therefore a

Vanilla NoC would be equipped with a single service level

(SL) [9] and virtual channel (VC) , and would perform

static order-preserving routing.

When a processor performs a L2 cache transaction (upon

L1 miss) it is translated into multiple transactions over the

NoC. A basic read transaction by P0 is depicted in Figure 2.

It is first translated into a read request packet and sent over

the NoC towards a L2 node according to the address of the

block for SNUCA, or after a search procedure for DNUCA.

If the block is missing at the home node (L2-miss) then the

block is fetched from the external memory, also via the

NoC. Otherwise, if the block exists in the L2 cache, several

scenarios are possible according to the state of the block

which is stored in the directory. If the block is not in

modified state, then L2 responds with read response packet

which carries the desired cache-line (indicated by a bold

arrow) back to the requestor P0 and sets the bit in the status

vector indicating that the block is shared by P0.

Figure 2. Read Transaction over NoC – the block was in shared state in

directory and remained shared

Alternatively, if this block was previously read exclusively

(with write permission) by some other processor P2 (see

 Figure 3), then a simple read transaction by P0 will lead to

a write back procedure indicated by the red dotted arrows in

 Figure 3. The write back procedure consists of a request

packet that is sent to the modifying node P2 and it

consequently sends back the desired block to the home

node L2 and it forwards it to the requestor P0.

Figure 3. Read Transaction over NoC with write back procedure: the

block was in Exclusive state due to an exclusive read by P2 and had

to be written back before responding to P0

Exclusive read request to a block in L2 will behave slightly

differently. Similarly to a regular read request it will cause a

main memory read in case of L2-miss, regular read

response in case that the block is not used by any other

processor, and write back procedure in case that some other

processor is modifying this block. However, if the block is

shared by several other processors (Figure 4), the directory

has to stall the transaction, send invalidation messages to all

sharing processors and only after receiving invalidation

 4

acknowledge from all the sharing processors, it is allowed

to respond with the requested cache line (Figure 4) and to

mark the directory status of this block as modified.

Figure 4. Read Exclusive Transaction over NoC: the block was in

Shared state in directory and it causes invalidation procedure

Another possible transaction towards L2 is a write

transaction which happens as a result of L1 eviction. It is

not acknowledged to the processor and the only possible

outcome of this transaction can be a successive eviction of

L2 to main-memory.

Vanilla NoC for Coherent CMP NUCA:

The previously discussed distributed CMP cache

transactions can be carried out by regular unicast packets

transmitted over any wormhole based multi-hop Vanilla

NoC [9,31-43] without implementing any special

mechanisms besides network interfaces for processors and

L2-caches. The Vanilla NoC should also preserve packet

ordering by the means of static packet routing and single SL

and VC for each physical link.

Vanilla NoC Interfaces for CMP:

Assuming simple coherence-preserving and in-order

processor interface, each read request stalls the requesting

interface from sending new requests until it receives a

response message from L2. In addition, each write back and

invalidation procedure stall the L2 home node and its

directory from dealing with other pending requests, since it

has to preserve total command order. On the other hand

there is a need to prevent system deadlocks, and therefore

the processors and L2 banks must be able to consume

request messages and respond to invalidation and write

back requests.

Processor Interface Architecture:

The processor interface manages two packet queues. The

first is a source queue, which contains transactions that are

originated from the local CPU and waiting to be transmitted

towards L2 via the network. The second queue is a response

queue which stores the response packets for received

requests (invalidation and write back requests) that are

ready to be transmitted over the network. The processor

interface is responsible for packetizing the local CPU L2

memory transactions, enqueing them in the source queue

and scheduling the queue for transmission over the network

not before receiving a response to a previously transmitted

request packet and upon available buffers in the adjacent

network router as in regular wormhole NoC scheduling [9].

Therefore, the scheduling of the source queue is stalled

upon sending read or read exclusive requests, and is

awakened after receiving read data from L2. Upon

receiving a write back request or an invalidation request it

immediately forwards it to the cache controller and

enqueues a response packet in the respond queue. In

addition, the scheduler must give priority to the respond

queue over the source queue in order to eliminate protocol

deadlocks. In other words, the processor interface must first

respond to all received requests and only then it turns to

send its own transactions.

L2-cache Interface Architecture:

The L2 network interface also manages two queues. The

first queue contains incoming requests from the network,

such as read and read exclusive. The second queue, stores

the response packets for already processed requests. The

mission of L2 is to serve as a serialization point and treat

incoming requests in-order. Therefore, when L2 is in the

middle of write back or invalidation procedures (waiting for

write back of cache-line or for multiple invalidation

acknowledges) it is not processing any arriving requests. In

this state the L2 interface is stalled, meaning that L2 is not

processing requests from its request queue and is not

enqueueing any new responses. L2 interface enters this state

upon processing read or read exclusive request for a block

that the directory shows that it is modified state and needs

to be written back, or upon processing a read exclusive

request for a block that the directory shows that it is shared

and needs to be invalidated. Otherwise, if the requested

block is not shared and not modified, an immediate

response is enqueued into the respond queue and L2 is not

stalled.

The Vanilla NoC which preserves ordering, combined with

the necessary processor and L2 interfaces, provides the

needed mechanisms for memory coherent L2 access.

However, as described in the previous section, each

memory transaction results in a series of network

transactions which dominate the delay of cache access in

distributed CMP systems. Therefore in the following

sections we describe the possible NoC-related mechanisms

that will shorten the cache access time and provide total

program speedup within insignificant hardware cost.

3.2 Priority-based NoC
We start with the following observations:

 5

Observation A:

L2-cache total access delay is a summation of the following

delay components: the queuing time at the processor

interface, the round-trip delay of request and response

messages between processor and L2-cache bank over the

NoC, the queuing time in L2 incoming requests and

outgoing response queue and the round trip delay of write

back and invalidation procedures.

Observation B:

All NoC transactions which constitute the L2-cache access

procedure are of an equally very high importance since they

directly contributed to the delay period which separates

between the processor and its desired data (L1 cache-miss).

Observation C:

L2-cache accesses consist of two types of messages: first a

short control messages (either request or acknowledge), and

second, long messages that carry the cache line (64 bytes

and additional overhead – in our example).

From analyzing observations A-C, we propose to

differentiate between short control messages and long data

messages by equipping the NoC with multiple priorities

similar to QNOC [9], and by giving a higher priority to the

(short) control messages over the (longer) data messages.

Although according to observation B all messages are of

the same importance, giving priority to short messages

significantly decreases their delay without a large impact on

the delay of long data packets. This is especially true in the

case of a wormhole NoCs where short messages can be

blocked behind long worms that are not even destined to the

same destination nodes.

There are three types of short messages in our system: read

or read exclusive requests, write back request and

invalidation request or acknowledges. By giving priority to

each type of messages we can speed up different phases in

the coherent cache-access protocol. For example, a read

request message with higher priority will reach L2 earlier

and cause an earlier response, either a data response, a write

back or an invalidation procedure. Thus, leading to a total

shorter transaction round trip delay in the NoC, that is

translated into a shorter stall time at the processor

interfaces, leading to shorter queueing delays in the

processor transmitting queues.

Similarly, by giving a higher priority to write back and

invalidation request messages and acknowledge messages,

we can not only reduce the round trip delays of write back

and invalidation procedures which are components of total

transaction delay, but also reduce the stalling time of the

L2-cache. This allows the L2-bank to start serving the next

pending request earlier, leading to a minimal overall L2

cache-access delays and an overall system speedup.

Interface Support for Coherence Protocol Correctness:

A Priority-based NoC with multiple priorities can no longer

provide in-order delivery among packets that are

transmitted with different priorities. As a result, a system

which uses Vanilla NoC interfaces becomes vulnerable to

coherency protocol failures. Figure 5 shows an example of

a possible failure. A distant processor P0 requests a cache-

line from directory (1) using high priority request, as a

result the directory responds with a long and low priority

message (2). Meanwhile, a nearby processor P1 performs

an exclusive read (3) of the same cache-line, resulting in a

high priority invalidation message (4) which may reach

processor P0 before the low priority read response. A

Vanilla processor interface would invalidate the cash-line,

and reply with invalidation acknowledge towards L2-bank.

Later, when read response (2) finally reaches P0, its

processor stores this cache-line in the local L1 and P0

consumes it despite the fact that P1 already modified it.

Figure 5. An example illustrating the need for serialization of

transactions at processor interface for Priority-based NoC

This is clearly a coherency violation. The coherency

protocol fails because the invalidation arrived before the

read response. A similar problem may occur when a

processor receives a write back request before a read

response. A simple solution to this problem is a state-

preserving serialization of transactions in the processor

interface. The processor interface should not immediately

invalidate or write back upon every request without

checking first whether this invalidation or write back is for

a block that the processor just requested and did not get a

response yet.

In summary, we propose to minimize the overall L2-cache

transaction delay by implementing a low cost priority

mechanism in NoC and applying it for short control

messages. This approach does not only minimize the

average NoC traversal delays but also minimizes the

queuing delays in the processor and the L2-cache interfaces.

The Priority-based NoC approach is a generic method for

efficient CMP communication. It can support other

variations of cache-coherency protocol and can be literally

useful for any other CMP related communication tasks,

such as search in DNUCA, isolating low priority traffic

(such as prefetch and DMA) out of high priority traffic,

synchronization and mutual exclusion support primitives

support (see next Sections).

3.3 Advanced–Services NoC
Although Priority-based NoC is a powerful tool for CMP

communication, we explore further advanced services and

 6

mechanisms for distributed NUCA CMP that can be added

on-top of the Priority-based NoC. Advanced-services NoC

is a portfolio of solutions that a system architect can decide

to use for boosting performance and saving power in CMP.

3.3.1 Special Broadcast for Short Messages
Observation D:

Invalidation procedure is unique since it might require

sending invalidation messages to multiple processors that

share the specific cache-line and gathering invalidation

acknowledge messages from them. It becomes an important

L2 cache-access delay component in programs having a

large amount of write-sharing among the processors.

Therefore, in addition to the proposed priority mechanism

which leads to a substantial speedup, one can also want to

use more efficient multicast and broadcast schemes instead

of multiple unicast messages (which are the only type

supported by the Vanilla NoC). However, broadcast-based

invalidation is an undesired solution for a wormhole NoC.

Wormhole broadcast is deadlock-sensitive and extremely

slow especially when several broadcast trees coexist in the

network. The wormhole broadcast tree traversal time in the

network is dominated by the speed of the slowest leaf. In

our CMP system each memory bank is a potential source of

invalidation broadcast. Therefore, there is a need to provide

deadlock-freedom (by adding additional VCs). In addition,

multiple broadcast trees may also slow each other.

Store & Forward Broadcast Embedded in Wormhole NoC:

Because of the complications described above, we propose

to enhance the wormhole NoC router with a message

replication mechanism for short control messages only. In

this way, we achieve a performance of store and forward

(S&F) broadcast by a small hardware investment, as we do

not increase router buffering.

In the following we sketch the enhanced router architecture.

A generic input-queued wormhole router [9] [27] is equipped

with several flit buffers for better performance of the

wormhole pipeline [27]. The length of control messages is a

few flits only, which would fit into such a queue. In a

wormhole router the flow control is performed on a flit by

flit basis, i.e. flit-based flow control. For implementing S&F

broadcast the output port of the router schedules the packet

only when there are enough buffers to contain the whole

packet, i.e. packet-based flow control. The input buffer

management logic does not remove the packet from the

input buffer before it is transmitted over all scheduled

output ports.

The broadcast routing is very simple in a mesh topology. It

can be performed in XY like manner, (see Figure 6) while

the routers along X-axis would have to replicate packets up

and down and forward that packet further in the X-

direction. The routers along the Y-direction of packet

propagation only forward the packet without replication.

The long packets carrying data are transmitted using the

regular wormhole mechanism.

This broadcast service for short control messages can be

enhanced with a priority mechanism and used for

invalidations as well as for other kinds of system traffic, i.e.

search in DNUCA, synchronization messages and more.

Figure 6. XY Based S&F Broadcast in wormhole NoC

Another mechanism that is useful in CMP is message

consolidation. Consider an example of gathering

invalidation acknowledge messages from all invalidated

processors in a more efficient way than unicast. A router

that supports message consolidation (a.k.a. gather function)

maintains a state for each active broadcast at each output

port. The acknowledge messages returns from the broadcast

tree leaves via the same route as the original broadcast tree.

Once all the acknowledge messages from all ports that have

transmitted the original broadcast are received, the router

invokes a single acknowledge message towards the root.

This approach minimizes the amount of messages during

invalidation cycle and reduces invalidation delay and total

power dissipation since fewer messages traverse the

network.

Broadcast on a Virtual Ring:

Another approach for efficient invalidation can be

implemented using a special multicast solution, termed

virtual-ring. It is formed among the former broadcast tree

leaves (the processors in our case). A virtual ring can be

built on top of the existing network at almost no network

hardware cost. The basic idea is shown in Figure 7. Upon

invalidation, L2 bank sends a single invalidation request to

the nearest processor marked as ring invalidation message.

When a processor network interface receives ring

invalidation message it invalidates its L1-cache and

immediately forwards the message towards the next

processor in the ring. The invalidation message can carry a

counter of the already visited processors and then to visit all

processors in the ring. Otherwise, it can carry the sharing

status vector which will indicate which processors really

need invalidation, and the invalidation ring would be

dynamic according to the vector value. When the ring

invalidation message reaches the last processor in the ring it

is forwarded to the L2-bank that originated the invalidation

procedure. This last message also serves as invalidation

acknowledge consolidation for all processors in the ring.

 7

0 7

56 63

P0 P1

P5 P4

P
6

P
7

P
3

P
2

Figure 7. Virtual Invalidation ring implemented on top of existing NoC

Again, this technique can be combined with our priority

mechanism and the ring invalidation messages can traverse

the network at higher priority than the long data messages.

The virtual ring approach minimizes the number of

messages and consequently reduces power consumption.

However, the virtual ring can become a longer path than

sending small number of invalidation messages and its

acknowledges using unicast. Therefore the efficiency of this

approach is a function of the number of shaaring processors

that need to be invalidated. In such cases, one can use a

hybrid approach. For instance, a L2-interface can decide to

send invalidation using broadcast or unicast as a function of

the number of processors that are about to be invalidated. If

the number of processors is below some threshold number it

will send several unicast messages. Otherwise it will send a

ring invalidation.

3.3.2 Optimized Search over NoC in D-NUCA
Observation E:

Using DNUCA, blocks may reside in different locations

within the cache and hence a mechanism for locating blocks

is needed. Therefore the delay of search procedure in D-

NUCA can become an important factor which constitutes

the cache- transaction delay

In the Vanilla NoC, broadcast search can be implementing

only by sending multiple unicast search request messages to

all memory banks. We propose two approaches for

improving upon the Vanilla NoC.

Priority Search:

Since without knowing the placement of the desired block

in DNUCA the processor is stalled, it is of very high

importance that the search would be executed as fast as

possible. Therefore we might allocate a special priority for

short search messages to allow them to bypass long data

messages.

S&F Broadcast Search

The S&F broadcast which was described above, can be

useful for flooding the short search messages along the grid

of L2 banks. It would drastically decrease the number of

search messages in the system which would lead to a faster

search procedure along with less interference and delays for

other messages in the system. In addition it will reduce the

power consumption of the search procedure.

3.3.3 Synchronization and Mutual Exclusion support

In NoC-based CMPs, similarly to regular multiprocessor

machines, the issues of point-to-point, global (barrier)

synchronization and mutual exclusion among distributed

processes is very important. Mutual exclusion operations

are usually supported by hardware lock mechanisms and

atomic primitives such as Test&Set and its sophisticated

derivatives. Synchronization algorithms are also

implemented using locks.

When a processor is spinning on Lock (testing a lock), the

processor gets L1 cache miss, brings the current value of

the lock to its local L1 cache from L2-home node and it

keeps spinning on its value locally until the value of the

lock is changed and the processor gets a notification about

this via the standard invalidation of the lock in the local L1

cache. Therefore, at first glance it seems that there is not

much space for optimization for locks in CMP, since the

spinning is performed locally. However, whenever a lock

which is tested by many processors is released, the waiting

processors compete to take hold of it. In the case of

barriers, many processors must be synchronized and then

released. This is a typical case for barrier synchronization

where each processor busy-waits on a locked counter to see

if it reached a certain value. Such activity often causes hot

spots in the memory system interconnect.

It can be seen that synchronization algorithms will perform

well under low-contention periods over NoC, but under

high-contention periods there is a need to incorporate

additional mechanisms into NoC and NOC interfaces for

more efficient synchronization.

There has been already a substantial work performed in this

field of software and hardware support for Locks in the

context of multiprocessors and CMPs [24] [25] [26] . Most

of the hardware methods mainly focus on maintaining a list

of nodes waiting on a lock and which is maintained entirely

in hardware and the releaser grants the lock to one of the

waiting nodes on a list without affecting others.

Implementing such subscription mechanism for lock at NoC

interface over Priority-based NoC will eliminate busy wait

over network. It may reduce the lock handover time as well

as the interference of lock traffic with data access and

coherence traffic.

4. Numerical Evaluation
We evaluated the schemes proposed in Section 3 through

simulation. In Subsection 4.1 we present the simulation

environment used, which includes CMP and NoC

simulators and a description of the evaluated CMP

benchmarks. In Subsection 4.2 we present the simulation

results that demonstrate the advantages of the priority-based

NoC approach over the Vanilla NoC in terms of cache-

access delay and overall program speedup.

 8

4.1 Simulation Environment

4.1.1 CMP and NoC Simulators
The NoC-based CMP system illustrated in Figure 1 is fully

modeled by combining two cycle-accurate simulators.

Simics [28] is used for simulating parallel programs

execution in CMP and producing L2 access traces which

are fed into an OPNET-based NoC simulator [9].

The system that is modeled in Simics comprises a 8-

processor CMP design, using the x86 in-order processor

model as a building block. Each processor has a private, 2-

way set associative, 64KB L1 data cache, and all processors

share a 16MB, 16-way set associative L2 data cache.

(Instruction caching is not implemented, but instructions are

assumed to be available with no delay). Cache block size is

64 bytes for both L1 and L2.

The L2-access traces from Simics include L2-transactions

and the inter-transaction delays, which represent the times

at which the processor uses its L1-cache without accessing

L2. These traces are fed into the OPNET-based tool which

simulates the full directory-based coherent cache-access

mechanism over NoC which was described in Section 3.

The developed OPNET models include the Vanilla and the

Priority-based NoCs and the NoC interfaces for coherent

CMP communication (see Section 3). Both the Vanilla and

Priority-based NoCs are grid-based wormhole NoCs,

similar to [9] with static XY routing mechanism and equal

capacity for all links. Flit size is 16 bit and the buffer size at

routers is 4 flits. The clock frequency of the processors is

10 GHz.

4.1.2 Evaluated Benchmarks
We run Mandrake 10.1 Linux with SMP kernel version 2.6,

custom-compiled to interface with Simics, on top of which

we run Linux programs as benchmarks. Our benchmarks

include three SPLASH-2 benchmarks [29]: (Fft, Ocean and

Radix), and two static web content serving (Apache HTTP

server and Zeus web server). For both web benchmarks, we

use the SURGE [30] toolkit to generate a workload of web

requests from a 30,000-file, 700MB repository with a zero

back-off time. This toolkit generates a Zipf distribution of

file accesses, which was shown to match real-world web

workloads (used by SpecWeb2005).

Typical parallel benchmarks begin with some setup code,

which is run serially, and only then embark on parallel

processing. Since we are interested in the parallel part of

the applications, we fast forward through the serial part and

performed the measurements only in the parallel part of the

code.

4.2 Simulation Results
We simulated about a million instructions per each

benchmark. The measured delay of transaction is calculated

from the time that the processor writes the transaction into

its NoC interface queue until the processor receives the

requested cache-line from L2. In other words, the overall

delay consists of the queueing time at the processor

interface, the end-to-end (ETE) NoC delay towards the L2-

bank, the queuing delay at the L2 interface, the delay of

possible invalidation or write back procedures, and finally

the ETE NoC delay from L2 to the requesting processor.

We measure the total L2-access delay of both read and read

exclusive commands. These commands are extremely

performance critical since they stall the processor. We also

measure the total program throughput which is the number

of executed commands. Although we fully simulate writes

resulting from eviction from L1-cache, we do not include

them in the average delay calculation since they do not

affect the performance of the processors (these writes do

not cause processor stalls).

Av. Delay of L2-Read in Apache

234

5762

286

1301

994

0

200

400

600

800

1000

1200

1400

1 4 16
Link Capacity[gbps]

D
e

la
y

 [
c

y
c

le
s

]

Vanilla NoC

Priority-based NoC

Figure 8. Average delay of L2 Read Transaction using Vanilla and

Priority-based NoCs in the Apache benchmark as a function of

different link capacities

 Figure 8 demonstrates the distribution of L2 read

transactions average delays in the Apache server benchmark

for Vanilla and Priority-based NoCs as a function of link

capacity in the network. The graph shows that the delay of

L2 transactions is affected by the NoC link capacity or

alternatively by the network load. When the NoC is lightly

loaded then the read delays are relatively small. During

high network loads the L2 access delays can become

extremely large. A similar behavior is observed in read

exclusive delays.

 Av. Delay Reduction of L2-Transaction in Apache

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 4 16

Link Capacity [gbps]

D
e
la

y
 R

e
d

u
c
ti

o
n

 [
%

]

Read

Read Exclusive

Figure 9. Read and Read Exclusive average delay reduction in apache

as a function of different link capacity

One can also observe from the graph that the delay

improvement achieved using a Priority-based NoC is

 9

growing with the network load. Figure 9 quantifies the

delay reduction that can be achieved by using a Priority-

based NoC in both read and read exclusive transactions in

the Apache benchmark. As expected, the major delay

reduction is achieved in a highly loaded network with a

large contention over the network resources. In such cases,

the priority based mechanism allows for short control

messages to bypass long worms that are blocked in the

network. It achieves a delay reduction of 26% and 24% for

regular and exclusive read respectively in a heavily loaded

NoC, and a 10% delay reduction for both read and read

exclusive transactions in a lightly loaded NoC.

We also explore the potential delay reduction of using a

Priority-based NoC compared to the Vanilla-approach

across several benchmarks over a medium loaded NoC. The

results summarized in Figure 10 clearly show the advantage

of Priority-based NoC over Vanilla approaches.

L2 Access Delay Reduction by Priority-based NoC

22.6

31.8

19.6

28.4

13.5

25.3

18.3

32.9

22.3

28.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

apache zeus fft ocean radix

D
e

la
y

 R
e

d
u

c
ti

o
n

 [
%

]

Read Read Exclusive

Figure 10. Average L2 access delay reduction in read and read exclusive

transactions by using Priority-based NoC over several benchmarks

The actual L2-transaction delay as well as the delay

reduction of the Priority based approach are a function of

many factors that depend on the system and the

benchmarks. These include the frequency of L2-access (or

inter-transaction delay), the load of the actual routing path

in the network, the amount of read-write sharing in the

benchmark and as a result the amount of invalidations and

write backs, the number of sharers that need to be

invalidated during each invalidation, the distance from the

desired L2 bank and finally the contention on that bank.

Despite this complication, using simple and low-cost

Priority-based NoC approach we succeed to achieve a

substantial delay reduction across a variety of benchmarks.

The maximal delay reduction reached 33% in FFT read and

28% in Zeus read exclusive transactions.

Finally, we examine the total application speedup using a

Priority-based NoC. The results are depicted in Figure 11.

We observe that the priority-based NoC improves the

overall system performance in all benchmarks. The best

improvement is achieved in Zeus, which boosts overall

system performance by 9.4%. The system performance

improvement strongly depends on the amount of L2-delay

reduction and the frequency of L2-access in the benchmark.

Total Program Speedup by Priority-based NoC

9.4

8.7
9.0

8.6

5.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

apache zeus fft ocean radix

S
p

e
e

d
u

p
 [

%
]

Figure 11. Overall Program Speedup by using priorities over several

benchmarks

5. SUMMARY
We explored the NoC communication paradigm associated

with cache coherency of static and dynamic NUCA CMP

and its basic mapping over a Vanilla-NoC system, including

the details of processor and L2 network interfaces. The

main contribution of the paper is the extension of the

vanilla NoC and processor interface with a simple and low

cost priority mechanism. Such Priority-based NoC is

capable of differentiating and prioritizing short control

messages from long data packets. This generic approach fits

and expedites almost any CMP communication task (i.e

uncached and cache-coherent R/W, search in DNUCA,

isolating low priority traffic, synchronization and mutual

exclusion support) for any proposed coherency-protocol

modifications. In particular, we show how to boost

performance of directory-based coherency protocol using

priority-based NoC, while maintaining coherency

correctness. We show how to further enrich the unicast-

based communication services of such a Vanilla NoC by

Advanced-services NoC mechanisms such as: virtual

invalidation rings, efficient store-and-forward multicast for

short messages which is embedded within a wormhole NoC,

and a cache-line search mechanism for the efficient

operation of dynamic NUCA. In addition to cache

coherency operations, these mechanisms can also improve

other basic CMP transactions such as search and

synchronization support. Detailed CMP-NoC simulations

show an impressive (up to 33%) reduction in L2-access

delay by using priority-based NoC instead of the simplistic

Vanilla-NoC across a variety of benchmarks. The

simulations also demonstrate a substantial total system

speedup in all simulated benchmarks (up to 9.4% speedup).

6. REFERENCES
[1] B. M. Beckmann and D. A. Wood. Managing wire delay in

large chip multiprocessor caches. In MICRO 37, Dec. 2004

[2] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger and S.W.

Keckler. A NUCA substrate for Flexible CMP Cache

Sharing. ICS 05 , June, 2005

[3] Bradford M. Beckmann, Michael R. Marty, and David A.

Wood, ASR: Adaptive Selective Replication for CMP

Caches, MICRO 2006

 10

[4] M. Zhang and K. Asanovic, Victim Replication: Maximizing

Capacity while Hiding Wire Delay in Tiled Chip

Multiprocessors, ISCA-32, June 2005.

[5] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-

uniform cache structure for wire-delay dominated on-chip

caches. In ASPLOS X, pages 211–222, Oct. 2002

[6] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian,

Leveraging Bloom Filters for Smart Search Within NUCA

Caches, 7th Workshop on Complexity-Effective Design

(WCED), June 2006

[7] Z. Guz, I. Keidar, A. Kolodny, U. C. Weiser, Nahalal:

Memory Organization for Chip Multiprocessors, Technical

Report CCIT 600, Technion Department of Electrical

Engineering, September 2006

[8] David E. Culler et al., “Parallel Computer Architecture: A

Hardware/Software Approach”, Morgan Kaufmann

Publishers Inc, 1997.

[9] E. Bolotin, et al., “QNoC: QoS Architecture and Design

Process for Networks on Chip”, JSA, Feb 2004

[10] S. V. Adve and K. Gharachorloo, “Shared memory

consistency models: A tutorial,” IEEE Computer, vol. 29, no.

12, pp. 66–76, 1996.

[11] D. Lenoski, et al., “The DASH prototype: implementation

and performance,” SIGARCH Comp. Arch. News, vol. 20,

no. 2, pp. 92–103, 1992.

[12] X. Shen, Arvind, and L. Rudolph, “CACHET: an adaptive

cache coherence protocol for distributed shared-memory

systems,” in Proc. 13th Int. Conf. Supercomputing, Jun.

1999, pp. 135–144.

[13] J. Huh, et al., “Speculative incoherent cache protocols,”

IEEE Micro, vol. 24, no. 6, Nov./Dec. 2004.

[14] D. Dai and D. Panda, “Reducing cache invalidation

overheads in wormhole routed DSMs using multidestination

message passing,” in Proc. 1996 Int. Conf. Par. Processing,

Aug. 1996, pp. 138–145.

[15] E. E. Bilir, et al., “Multicast snooping: a new coherence

method using a multicast address network,” in Proc. 26th Int.

Symp. Comp. Arch., Jun. 1999, pp. 294–304.

[16] L. Barroso et al., “Piranha: A scalable architecture based on

singlechip multiprocessing,” in Proc. 27th Int. Symp. Comp.

Arch., Jun. 2000, pp. 282–293.

[17] L. Barroso and M. Dubois, “Performance evaluation of the

slotted ring multiprocessor,” in IEEE Trans. Comp., July

1995, pp. 878– 890.

[18] L. Cheng, et al., “Interconnect-aware coherence protocols,”

in Proc. 33rd Int. Symp. Comp. Arch., Jun. 2006.

[19] H. E. Mizrahi, et al., “Introducing memory into the switch

elements of multiprocessor interconnection networks,” in

Proc. 16th Int. Symp. Comp. Arch., Jun. 1989, pp. 158–166.

[20] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token

coherence: Decoupling performance and correctness,” in

Proc. 30th Int. Symp. Comp. Arch., Jun. 2003, pp. 182–193

[21] Noel Eisley, Li-Shiuan Peh and Li Shang, "In-Network

Cache Coherence", In Proceedings of the 39th International

Symposium on Microarchitecture (MICRO), Orlando,

Florida, December 2006.

[22] Frédéric Pétrot, ”On Cache Coherency and Memory

Consistency Issues in NoC Based Shared Memory

Multiprocessor SoC Architectures”

[23] Mirko Loghi et al. “Exploring the energy efficiency of cache

coherence protocols in single-chip multi-processor”.

GLSVLSI 2005.

[24] Matteo Monchiero et al, “Efficient Synchronization for

Embedded On-Chip Multiprocessors”, IEEE TVLSI October

2006

[25] Radovic, Z. Hagersten, E. , “Efficient Synchronization for

Nonuniform Communication Architectures”,

Supercomputing, ACM/IEEE 2002 Conference

[26] D. Lenoski, J. Laudon, K. Gharachorloo,W-D.Weber, A.

Gupta, J. Hennessy, M. Horowitz, and M. S. Lam. The

Stanford Dash Multiprocessor. IEEE Computer, 25(3):63–

79, March 1992.

[27] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "Cost

Considerations in Network on Chip", Integration-The VLSI

Journal, special issue on Network on Chip, Volume 38, Issue

1, October 2004, pp. 19-42.

[28] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

and G. Hallberg. Simics: A full system simulation platform.

IEEE Computer, 35(2):50–58, Feb. 2002.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 Programs: Characterization and

Methodological Considerations. In Proceedings of the 22nd

Annual International Symposium on Computer Architecture,

pages 24–37, June 1995.

[30] P. Barford and M. Crovella. Generating representative web

workloads for network and server performance evaluation. In

Measurement and Modeling of Computer Systems, pages

151–160, June 1998.

[31] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal

Network on Chip: Concepts, Architectures, and

Implementations", IEEE Design and Test of Computers,

2005.

[32] F.Moraes et al,“HERMES: an Infrastructure for Low Area

Overhead Packet-switching NoC,“ VLSI Journal, 2004.

[33] M. Dall'Osso et al., “XPIPES: a Latency Insensitive

Parameterized Network-on-Chip Architecture” ICCD, 2003.

[34] M. Millberg et al., “The Nostrum Backbone-A

Communication Protocol Stack for Networks on Chip,”

VLSI Design Conf., Jan 2004.

[35] D.S. Tortosa and J. Nurmi, “Proteo: A New Approach to

Network-on-Chip,” IASTED CSN’02, Spain, 2002.

[36] S. Kumar et al., “A Network on Chip Architecture and

Design Methodology,” ISVLSI 2002.

[37] J. Hu, R. Marculescu, “DyAD - Smart Routing for Networks-

on-Chip,” DAC 2004.

[38] J.Henkel, W.Wolf, and S.Chakradhar, "On Chip Networks: A

scalable communication-centric embedded system design

paradigm", in Procedings, VLSI Design 2004

[39] D. Bertozzi et al., “ NoC synthesis flow for customized

domain specific multiprocessor systems-on-chip”. IEEE

Trans. on Parallel and Dist.Systems, 16(2):113–129,

2005.

[40] A. Hemani et al., Network on a chip: An architecture for

billion transistor era. In IEEE NorChip, 2000.

[41] L Benini, G.D. Micheli, Networks on chips: a new SoC

paradigm, IEEE Computer 35 (1) (2002) 70–78.

[42] P. Guerrier, A. Greiner, A generic architecture for on-chip

packet-switched interconnections, DATE 2000

[43] E. Rijpkema, K. Goosens, P. Wielage, A router architecture

for networks on silicon, in: Proceedings of Progress 2001

