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ABSTRACT 

The paper introduces Network-on-Chip (NoC) design 

methodology and low cost mechanisms for supporting efficient 

cache access and cache coherency in future high-performance 

Chip Multi Processors (CMPs). We address previously proposed 

CMP architectures based on Non Uniform Cache Architecture 

(NUCA) over NoC, analyze basic memory transactions and 

translate them into a set of network transactions. We first show 

how a simple, generic NoC which is equipped with needed 

module interface functionalities can provide infrastructure for the 

coherent access of both static and dynamic NUCA. Then we show 

how several low cost mechanisms incorporated into such a 

Vanilla NoC can facilitate CMP and boost performance of a cache 

coherent NUCA CMP. The basic mechanism is based on priority 

support embedded in the NoC, which differentiates between short 

control signals and long data messages to achieve a major 

reduction in cache access delay. The low cost Priority-based NoC 

is extremely useful for increasing performance of almost any other 

CMP transaction (i.e. uncached and cache-coherenet R/W, search 

in DNUCA, isolating low priority traffic, synchronization and 

mutual exclusion support). Priority-based NoC along with the 

discussed NoC interfaces are evaluated in detail using cycle-

accurate CMP-NoC simulations across several SPLASH-2 

benchmarks and static web content serving benchmarks showing 

substantial L2 cache access delay reduction and overall program 

speedup. For further system improvements, we introduce 

additional low cost NoC mechanisms that include: virtual 

invalidation rings, efficient store-and-forward multicast for short 

messages which is embedded within a wormhole NoC, and a line-

cache search mechanism for the efficient operation of dynamic 

NUCA. These mechanisms can also expedite not only cache 

coherency transactions but also other basic CMP transactions such 

as search and serialization primitives support.  

1. Introduction 
Microprocessor architecture is transition towards multi-core 

architectures that exploit thread-level parallelism, and 

provide performance improvements as well as power-

efficiency. Such chip multi-processors (CMPs)[1-7] need to 

employ large shared on-chip cache memory (typically a L2 

cache). The cache must support parallel transactions with 

multiple cores. Hence, a distributed cache, comprised of 

multiple memory banks interconnected by a network on 

chip (NoC)[9,31-43], as illustrated in  Figure 1, is an 

accepted and likely approach. In such a structure, the 

effective access time to the shared cache will become a 

major performance bottleneck, as both the number of cores 

and the number of clock cycles required for signal 

propagation across the die will increase with technology 

scaling.  

This architecture raises many challenges because the system 

depicted in  Figure 1 needs to efficiently discover the cached 

location of each physical memory address and maintain 

multiple data copies, while ensuring data coherency of 

shared data among all the cores. Traditional snooping 

protocols for cache coherency [25] are not suitable for 

implementation over a NoC, and are not scalable with the 

number of cores. Directory-based coherence protocols 

require multiple network traversals (e.g. to search the 

cached location, determine the sharing status, update or 

invalidate etc.). Consequently, a CMP equipped with a 

standard NoC and standard processor and cache network 

interfaces may incur large delays in cache transactions. 
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Figure 1. Modern CMP System interconnected by NoC :8 CPUs along 

with L2 Cache distributed in 64 Banks  

Previous CMP research mainly addressed the principal 

architectural issues of distributed shared CMP cache over a 

NoC abstraction  [1] [2] [3] [4] [6] [7]. In the evaluation of 

SNUCA and DNUCA  [1] [2] the authors make simplifying 

assumptions regarding network delays and behavior. They 

do not evaluate any detailed NoC design or optimize the 

NoC for supporting typical cache operations.  

There has been substantial prior work in the area of cache 

coherency optimization in the context of multiprocessors 

[11-18]. The majority focused on in-protocol optimizations, 

releasing consistency model and speculation 

 [10] [11] [12] [13]. Some approaches combined snooping and 

directory-based protocols [12]. Several studies looked into 

broadcast and multicast snooping, and ring optimizations 

 [14] [15] [16] [17]. In  [18] the authors tried to efficiently map 

a coherency protocol onto physical wires in several metal 

layers, with different widths and thicknesses. The token 

coherence method  [19] suggests to exchange and count 

tokens to control coherence permissions. 
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Several recent papers focused on NoC–based CMP cache 

coherency  [21] [22] [23].  [23] explores the performance vs. 

energy tradeoffs for hardware and software snoop-based 

protocols in MPSoC. Their evaluation assumes a shared-

medium interconnect among processors and shows that 

hardware solutions based on snooping are power inefficient. 

It does not address directory based coherence schemes 

which are the topic of our work. 

Eisley et al.  [21] addressed the cache coherency problem in 

CMP and proposed to alter the standard directory-based 

system by directories implemented inside NoC routers (in-

network approach). In the proposed architecture, routers 

may steer requests towards nearby data copies. This 

approach enables to reduce memory access delay but 

requires additional storage and a more sophisticated router 

architecture to perform directory-related manipulations on 

every packet at every hop. An alternate solution,  [22], 

proposes a software solution for memory coherency in 

MPSoCs. The approach relies on the programmer 

intervention for mapping local and shared variables and 

segments. Using uncached accesses for the shared 

segments, the cache coherency and memory consistency can 

be maintained at no hardware cost.  

The main contribution of this paper is the introduction of 

hardware based NoC priority mechanism for efficient 

distributed directory-based cache-coherent access in both 

static and dynamic NUCA systems, termed Priority-based 

NoC. The main power of Priority-based NoC is its 

simplicity, low hardware cost and its generic nature that can 

extend and accelerate many other operations. The major 

cache-access delay reduction is achieved by differentiating 

short control messages that constitute the coherency 

protocol and allowing these short messages to bypass long 

data packets while preserving the coherence protocol 

correctness. The same idea can apply to other common 

CMP memory and synchronization transactions such as 

regular (uncached) R/W, DMA and common variable 

synchronizations [26]. Our solution has a very low 

hardware cost and it does not impact the router architecture 

as in  [21]. Moreover, our approach is a complementary 

solution, and can be applied to provide additional speedup 

to the in-network directory of [23], or to the software 

messages of [24], as well as to other cache coherence 

protocols. 

In addition, we describe other new NoC mechanisms and 

services for a further improvement of efficient coherent 

cache-access in NUCA, termed an Advanced-Services 

NoC. These include virtual wormhole invalidation rings for 

well-organized invalidation procedure, efficient store-and-

forward multicast for short messages which is embedded 

within a wormhole NoC, and support for serialization and 

mutual exclusion primitives such as locks and Test&Set. 

For DNUCA based CMPs we introduce a cache-line search 

optimization mechanism that is required for efficient 

operation. Note that these additional mechanisms are also 

generic and can be used beyond the context of cache 

coherency. 

The rest of the paper is structured as follows. In Section 2, 

we give a short background of CMP NUCA. Then, we 

analyze cache coherency memory transactions and translate 

them into a set of network transactions. Then, we show how 

the basic-functionality Vanilla NoC needs to be equipped 

with special NoC module interfaces in order to support 

cache-coherent communication of both static and dynamic 

NUCA. In Section 3, we turn to introduce Priority-based 

NoC and Advanced-Services NoC for boosting 

performance of coherent distributed cache access and 

reducing its latencies. In order to illustrate the generic 

nature of our simple hardware solutions we also explain 

their usage beyond the cache coherency paradigm, for 

normal (uncached) R/W and for serialization primitives 

support such as locks and Test&Set. In Section 4, our 

Priority-based NoC is evaluated in detail using cycle- 

accurate CMP-NoC simulations across several benchmarks. 

Section 5 summarizes the paper. 

2. CMP NUCA Background 
 CMPs are shifting towards a NUCA  [5], where the cache is 

divided into multiple banks, and accesses to closer banks 

result in shorter access times. In NUCA, performance 

depends on the average (rather than worst-case) latency. To 

further reduce the average access time, the authors of   [5] 

have suggested the use of dynamic block migration, called 

Dynamic NUCA (DNUCA). In DNUCA, every access to a 

block moves the block one step closer to the processor, thus 

gradually reducing distances and access times to frequently-

used data. This differs from the basic Static NUCA 

(SNUCA) design, where block placement is static, 

determined by address. 

Several works have dealt with NUCA based CMP systems 

 [1] [2] [4] [7].  [1] [2] have studied both SNUCA and DNUCA 

implementations for CMP.  [3] [4] suggested replicating 

shared blocks within the cache in order to improve their 

proximity to all sharing cores.  [7] achieved vicinity for 

shared data by changing the common cache-in-the-middle 

CMP layout and by using a designated part of the cache 

capacity for shared blocks only. Using DNUCA, blocks 

may reside in different locations within the cache and hence 

a mechanism for locating blocks is needed. Search policies 

may vary from sequentially inquiring every bank to 

flooding of the interconnect in parallel, or use a hybrid 

intermediate policy such as phase-multicasting  [1] [5] [6]. 

Since the search introduces significant delays to the cache 

access time and overload the interconnect, some search 

hints are required to direct the search to specific banks and 

accelerate detection of cache miss.  [6] has leveraged bloom 

filters to devise such a complexity-effective search 

mechanism for CMPs. 

3. NoC support for CMP NUCA  
In this section we first describe a straightforward 

architecture of NUCA CMP over a Vanilla NoC. We 
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briefly describe the CMP memory architecture, basic CMP 

communication infrastructure and details of directory-based 

distributed coherency protocol over NoC. We also outline 

common L2 cache access transactions which are translated 

into multiple network transactions. We sketch the basics of 

the necessary NoC communication interfaces that support 

coherent cache accesses over NoC. 

Then we show how by using a Priority-based NoC which is 

equipped with a simple priority mechanism we can 

drastically decrease cache access latency and speed up the 

total program running time. Finally, we outline further 

possible Advanced-Services NoC mechanism for efficient 

cache-access and overall CMP performance such as: special 

broadcast and multicast mechanisms, ways for faster search 

in DNUCA, supporting synchronization primitives in CMP 

and others. 

3.1 Cache-Access in NUCA over Vanilla NoC  
In a CMP system such as in  Figure 1 there are two levels of 

cache hierarchy: shared L2-cache and private L1-caches 

(within the processor cores) that maintain copies of L2 data 

and may need to modify it. Therefore, we need to provide 

mechanisms to keep this non-uniform memory system in a 

coherent state and support sequential consistency. In other 

words, we need to support total ordering among memory 

transactions in the parallel system as it would be executed 

on a sequential system  [8]. 

Common snooping-based cache-coherency approaches [8] 

are not suitable for NoC and are not scalable with the 

growing number of nodes. Therefore, we focus on a 

directory based approach. This approach eliminates the 

need for using a slow and expensive shared bus or NoC 

broadcast. The directory serves as a serialization point for 

maintaining coherency. 

We focus on a distributed directory scheme which is more 

scalable than a central directory approach. In practice, the 

distributed directory is implemented by extending each L2-

cache-line (block) with the directory information, which 

tracks the state of this block. The directory information 

contains a status vector containing the identity of 

processors that store this cache-line in their L1 caches. It 

also contains a modified bit to indicate that this cache line is 

in modified state in one of the L1 caches. In this work we 

target the four-state (MESI) write-back invalidation 

protocol  [8].  

L2-caches and directory deal with incoming transactions in-

order for maintaining transaction consistency  [8]. Since out 

of-order mechanism require a considerable additional 

hardware costs and protocol verification we do not address 

such systems in this paper. 

We assume that the network maintains the ordering of 

messages for each source-destination pair. Therefore a 

Vanilla NoC would be equipped with a single service level 

(SL)  [9] and virtual channel (VC) , and would perform 

static order-preserving routing. 

When a processor performs a L2 cache transaction (upon 

L1 miss) it is translated into multiple transactions over the 

NoC. A basic read transaction by P0 is depicted in  Figure 2. 

It is first translated into a read request packet and sent over 

the NoC towards a L2 node according to the address of the 

block for SNUCA, or after a search procedure for DNUCA. 

If the block is missing at the home node (L2-miss) then the 

block is fetched from the external memory, also via the 

NoC. Otherwise, if the block exists in the L2 cache, several 

scenarios are possible according to the state of the block 

which is stored in the directory. If the block is not in 

modified state, then L2 responds with read response packet 

which carries the desired cache-line (indicated by a bold 

arrow) back to the requestor P0 and sets the bit in the status 

vector indicating that the block is shared by P0. 

 

Figure 2. Read Transaction over NoC – the block was in shared state in 

directory and remained shared 

Alternatively, if this block was previously read exclusively 

(with write permission) by some other processor P2 (see 

 Figure 3), then a simple read transaction by P0 will lead to 

a write back procedure indicated by the red dotted arrows in 

 Figure 3. The write back procedure consists of a request 

packet that is sent to the modifying node P2 and it 

consequently sends back the desired block to the home 

node L2 and it forwards it to the requestor P0. 

 

Figure 3. Read Transaction over NoC with write back procedure: the 

block was in Exclusive state due to an exclusive read by P2 and had 

to be written back before responding to P0 

Exclusive read request to a block in L2 will behave slightly 

differently. Similarly to a regular read request it will cause a 

main memory read in case of L2-miss, regular read 

response in case that the block is not used by any other 

processor, and write back procedure in case that some other 

processor is modifying this block. However, if the block is 

shared by several other processors ( Figure 4), the directory 

has to stall the transaction, send invalidation messages to all 

sharing processors and only after receiving invalidation 
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acknowledge from all the sharing processors, it is allowed 

to respond with the requested cache line ( Figure 4) and to 

mark the directory status of this block as modified. 

 

Figure 4. Read Exclusive Transaction over NoC: the block was in 

Shared state in directory and it causes invalidation procedure 

Another possible transaction towards L2 is a write 

transaction which happens as a result of L1 eviction. It is 

not acknowledged to the processor and the only possible 

outcome of this transaction can be a successive eviction of 

L2 to main-memory. 

Vanilla NoC for Coherent CMP NUCA:  

The previously discussed distributed CMP cache 

transactions can be carried out by regular unicast packets 

transmitted over any wormhole based multi-hop Vanilla 

NoC [9,31-43] without implementing any special 

mechanisms besides network interfaces for processors and 

L2-caches. The Vanilla NoC should also preserve packet 

ordering by the means of static packet routing and single SL 

and VC for each physical link.  

Vanilla NoC Interfaces for CMP: 

Assuming simple coherence-preserving and in-order 

processor interface, each read request stalls the requesting 

interface from sending new requests until it receives a 

response message from L2. In addition, each write back and 

invalidation procedure stall the L2 home node and its 

directory from dealing with other pending requests, since it 

has to preserve total command order. On the other hand 

there is a need to prevent system deadlocks, and therefore 

the processors and L2 banks must be able to consume 

request messages and respond to invalidation and write 

back requests. 

Processor Interface Architecture: 

The processor interface manages two packet queues. The 

first is a source queue, which contains transactions that are 

originated from the local CPU and waiting to be transmitted 

towards L2 via the network. The second queue is a response 

queue which stores the response packets for received 

requests (invalidation and write back requests) that are 

ready to be transmitted over the network. The processor 

interface is responsible for packetizing the local CPU L2 

memory transactions, enqueing them in the source queue 

and scheduling the queue for transmission over the network 

not before receiving a response to a previously transmitted 

request packet and upon available buffers in the adjacent 

network router as in regular wormhole NoC scheduling  [9]. 

Therefore, the scheduling of the source queue is stalled 

upon sending read or read exclusive requests, and is 

awakened after receiving read data from L2. Upon 

receiving a write back request or an invalidation request it 

immediately forwards it to the cache controller and 

enqueues a response packet in the respond queue. In 

addition, the scheduler must give priority to the respond 

queue over the source queue in order to eliminate protocol 

deadlocks. In other words, the processor interface must first 

respond to all received requests and only then it turns to 

send its own transactions.  

L2-cache Interface Architecture: 

The L2 network interface also manages two queues. The 

first queue contains incoming requests from the network, 

such as read and read exclusive. The second queue, stores 

the response packets for already processed requests. The 

mission of L2 is to serve as a serialization point and treat 

incoming requests in-order. Therefore, when L2 is in the 

middle of write back or invalidation procedures (waiting for 

write back of cache-line or for multiple invalidation 

acknowledges) it is not processing any arriving requests. In 

this state the L2 interface is stalled, meaning that L2 is not 

processing requests from its request queue and is not 

enqueueing any new responses. L2 interface enters this state 

upon processing read or read exclusive request for a block 

that the directory shows that it is modified state and needs 

to be written back, or upon processing a read exclusive 

request for a block that the directory shows that it is shared 

and needs to be invalidated. Otherwise, if the requested 

block is not shared and not modified, an immediate 

response is enqueued into the respond queue and L2 is not 

stalled. 

The Vanilla NoC which preserves ordering, combined with 

the necessary processor and L2 interfaces, provides the 

needed mechanisms for memory coherent L2 access. 

However, as described in the previous section, each 

memory transaction results in a series of network 

transactions which dominate the delay of cache access in 

distributed CMP systems. Therefore in the following 

sections we describe the possible NoC-related mechanisms 

that will shorten the cache access time and provide total 

program speedup within insignificant hardware cost. 

3.2 Priority-based NoC  
We start with the following observations: 
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Observation A: 

L2-cache total access delay is a summation of the following 

delay components: the queuing time at the processor 

interface, the round-trip delay of request and response 

messages between processor and L2-cache bank over the 

NoC, the queuing time in L2 incoming requests and 

outgoing response queue and the round trip delay of write 

back and invalidation procedures. 

Observation B: 

All NoC transactions which constitute the L2-cache access 

procedure are of an equally very high importance since they 

directly contributed to the delay period which separates 

between the processor and its desired data (L1 cache-miss). 

Observation C: 

L2-cache accesses consist of two types of messages: first a 

short control messages (either request or acknowledge), and 

second, long messages that carry the cache line (64 bytes 

and additional overhead – in our example). 

From analyzing observations A-C, we propose to 

differentiate between short control messages and long data 

messages by equipping the NoC with multiple priorities 

similar to QNOC [9], and by giving a higher priority to the 

(short) control messages over the (longer) data messages. 

Although according to observation B all messages are of 

the same importance, giving priority to short messages 

significantly decreases their delay without a large impact on 

the delay of long data packets. This is especially true in the 

case of a wormhole NoCs where short messages can be 

blocked behind long worms that are not even destined to the 

same destination nodes. 

There are three types of short messages in our system: read 

or read exclusive requests, write back request and 

invalidation request or acknowledges. By giving priority to 

each type of messages we can speed up different phases in 

the coherent cache-access protocol. For example, a read 

request message with higher priority will reach L2 earlier 

and cause an earlier response, either a data response, a write 

back or an invalidation procedure. Thus, leading to a total 

shorter transaction round trip delay in the NoC, that is 

translated into a shorter stall time at the processor 

interfaces, leading to shorter queueing delays in the 

processor transmitting queues. 

Similarly, by giving a higher priority to write back and 

invalidation request messages and acknowledge messages, 

we can not only reduce the round trip delays of write back 

and invalidation procedures which are components of total 

transaction delay, but also reduce the stalling time of the 

L2-cache. This allows the L2-bank to start serving the next 

pending request earlier, leading to a minimal overall L2 

cache-access delays and an overall system speedup. 

Interface Support for Coherence Protocol Correctness: 

A Priority-based NoC with multiple priorities can no longer 

provide in-order delivery among packets that are 

transmitted with different priorities. As a result, a system 

which uses Vanilla NoC interfaces becomes vulnerable to 

coherency protocol failures.  Figure 5 shows an example of 

a possible failure. A distant processor P0 requests a cache-

line from directory (1) using high priority request, as a 

result the directory responds with a long and low priority 

message (2). Meanwhile, a nearby processor P1 performs 

an exclusive read (3) of the same cache-line, resulting in a 

high priority invalidation message (4) which may reach 

processor P0 before the low priority read response. A 

Vanilla processor interface would invalidate the cash-line, 

and reply with invalidation acknowledge towards L2-bank. 

Later, when read response (2) finally reaches P0, its 

processor stores this cache-line in the local L1 and P0 

consumes it despite the fact that P1 already modified it.  

 

Figure 5. An example illustrating the need for serialization of 

transactions at processor interface for Priority-based NoC 

This is clearly a coherency violation. The coherency 

protocol fails because the invalidation arrived before the 

read response. A similar problem may occur when a 

processor receives a write back request before a read 

response. A simple solution to this problem is a state-

preserving serialization of transactions in the processor 

interface. The processor interface should not immediately 

invalidate or write back upon every request without 

checking first whether this invalidation or write back is for 

a block that the processor just requested and did not get a 

response yet.  

In summary, we propose to minimize the overall L2-cache 

transaction delay by implementing a low cost priority 

mechanism in NoC and applying it for short control 

messages. This approach does not only minimize the 

average NoC traversal delays but also minimizes the 

queuing delays in the processor and the L2-cache interfaces. 

The Priority-based NoC approach is a generic method for 

efficient CMP communication. It can support other 

variations of cache-coherency protocol and can be literally 

useful for any other CMP related communication tasks, 

such as search in DNUCA, isolating low priority traffic 

(such as prefetch and DMA) out of high priority traffic, 

synchronization and mutual exclusion support primitives 

support (see next Sections). 

3.3 Advanced–Services NoC 
Although Priority-based NoC is a powerful tool for CMP 

communication, we explore further advanced services and 
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mechanisms for distributed NUCA CMP that can be added 

on-top of the Priority-based NoC. Advanced-services NoC 

is a portfolio of solutions that a system architect can decide 

to use for boosting performance and saving power in CMP. 

3.3.1 Special Broadcast for Short Messages 
Observation D: 

Invalidation procedure is unique since it might require 

sending invalidation messages to multiple processors that 

share the specific cache-line and gathering invalidation 

acknowledge messages from them. It becomes an important 

L2 cache-access delay component in programs having a 

large amount of write-sharing among the processors.  

Therefore, in addition to the proposed priority mechanism 

which leads to a substantial speedup, one can also want to 

use more efficient multicast and broadcast schemes instead 

of multiple unicast messages (which are the only type 

supported by the Vanilla NoC). However, broadcast-based 

invalidation is an undesired solution for a wormhole NoC. 

Wormhole broadcast is deadlock-sensitive and extremely 

slow especially when several broadcast trees coexist in the 

network. The wormhole broadcast tree traversal time in the 

network is dominated by the speed of the slowest leaf. In 

our CMP system each memory bank is a potential source of 

invalidation broadcast. Therefore, there is a need to provide 

deadlock-freedom (by adding additional VCs). In addition, 

multiple broadcast trees may also slow each other.  

Store & Forward Broadcast Embedded in Wormhole NoC: 

Because of the complications described above, we propose 

to enhance the wormhole NoC router with a message 

replication mechanism for short control messages only. In 

this way, we achieve a performance of store and forward 

(S&F) broadcast by a small hardware investment, as we do 

not increase router buffering. 

In the following we sketch the enhanced router architecture. 

A generic input-queued wormhole router [9] [27] is equipped 

with several flit buffers for better performance of the 

wormhole pipeline [27]. The length of control messages is a 

few flits only, which would fit into such a queue. In a 

wormhole router the flow control is performed on a flit by 

flit basis, i.e. flit-based flow control. For implementing S&F 

broadcast the output port of the router schedules the packet 

only when there are enough buffers to contain the whole 

packet, i.e. packet-based flow control. The input buffer 

management logic does not remove the packet from the 

input buffer before it is transmitted over all scheduled 

output ports. 

The broadcast routing is very simple in a mesh topology. It 

can be performed in XY like manner, (see  Figure 6) while 

the routers along X-axis would have to replicate packets up 

and down and forward that packet further in the X-

direction. The routers along the Y-direction of packet 

propagation only forward the packet without replication. 

The long packets carrying data are transmitted using the 

regular wormhole mechanism.  

This broadcast service for short control messages can be 

enhanced with a priority mechanism and used for 

invalidations as well as for other kinds of system traffic, i.e. 

search in DNUCA, synchronization messages and more. 

 

Figure 6. XY Based S&F Broadcast in wormhole NoC 

Another mechanism that is useful in CMP is message 

consolidation. Consider an example of gathering 

invalidation acknowledge messages from all invalidated 

processors in a more efficient way than unicast. A router 

that supports message consolidation (a.k.a. gather function) 

maintains a state for each active broadcast at each output 

port. The acknowledge messages returns from the broadcast 

tree leaves via the same route as the original broadcast tree. 

Once all the acknowledge messages from all ports that have 

transmitted the original broadcast are received, the router 

invokes a single acknowledge message towards the root. 

This approach minimizes the amount of messages during 

invalidation cycle and reduces invalidation delay and total 

power dissipation since fewer messages traverse the 

network. 

Broadcast on a Virtual Ring: 

Another approach for efficient invalidation can be 

implemented using a special multicast solution, termed 

virtual-ring. It is formed among the former broadcast tree 

leaves (the processors in our case). A virtual ring can be 

built on top of the existing network at almost no network 

hardware cost. The basic idea is shown in  Figure 7. Upon 

invalidation, L2 bank sends a single invalidation request to 

the nearest processor marked as ring invalidation message. 

When a processor network interface receives ring 

invalidation message it invalidates its L1-cache and 

immediately forwards the message towards the next 

processor in the ring. The invalidation message can carry a 

counter of the already visited processors and then to visit all 

processors in the ring. Otherwise, it can carry the sharing 

status vector which will indicate which processors really 

need invalidation, and the invalidation ring would be 

dynamic according to the vector value. When the ring 

invalidation message reaches the last processor in the ring it 

is forwarded to the L2-bank that originated the invalidation 

procedure. This last message also serves as invalidation 

acknowledge consolidation for all processors in the ring. 
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Figure 7. Virtual Invalidation ring implemented on top of existing NoC 

Again, this technique can be combined with our priority 

mechanism and the ring invalidation messages can traverse 

the network at higher priority than the long data messages. 

The virtual ring approach minimizes the number of 

messages and consequently reduces power consumption. 

However, the virtual ring can become a longer path than 

sending small number of invalidation messages and its 

acknowledges using unicast. Therefore the efficiency of this 

approach is a function of the number of shaaring processors 

that need to be invalidated. In such cases, one can use a 

hybrid approach. For instance, a L2-interface can decide to 

send invalidation using broadcast or unicast as a function of 

the number of processors that are about to be invalidated. If 

the number of processors is below some threshold number it 

will send several unicast messages. Otherwise it will send a 

ring invalidation. 

3.3.2 Optimized Search over NoC in D-NUCA 
Observation E: 

Using DNUCA, blocks may reside in different locations 

within the cache and hence a mechanism for locating blocks 

is needed. Therefore the delay of search procedure in D-

NUCA can become an important factor which constitutes 

the cache- transaction delay  

In the Vanilla NoC, broadcast search can be implementing 

only by sending multiple unicast search request messages to 

all memory banks. We propose two approaches for 

improving upon the Vanilla NoC. 

Priority Search: 

Since without knowing the placement of the desired block 

in DNUCA the processor is stalled, it is of very high 

importance that the search would be executed as fast as 

possible. Therefore we might allocate a special priority for 

short search messages to allow them to bypass long data 

messages. 

S&F Broadcast Search 

The S&F broadcast which was described above, can be 

useful for flooding the short search messages along the grid 

of L2 banks. It would drastically decrease the number of 

search messages in the system which would lead to a faster 

search procedure along with less interference and delays for 

other messages in the system. In addition it will reduce the 

power consumption of the search procedure. 

3.3.3 Synchronization and Mutual Exclusion support 

In NoC-based CMPs, similarly to regular multiprocessor 

machines, the issues of point-to-point, global (barrier) 

synchronization and mutual exclusion among distributed 

processes is very important. Mutual exclusion operations 

are usually supported by hardware lock mechanisms and 

atomic primitives such as Test&Set and its sophisticated 

derivatives. Synchronization algorithms are also 

implemented using locks.  

When a processor is spinning on Lock (testing a lock), the 

processor gets L1 cache miss, brings the current value of 

the lock to its local L1 cache from L2-home node and it 

keeps spinning on its value locally until the value of the 

lock is changed and the processor gets a notification about 

this via the standard invalidation of the lock in the local L1 

cache. Therefore, at first glance it seems that there is not 

much space for optimization for locks in CMP, since the 

spinning is performed locally. However, whenever a lock 

which is tested by many processors is released, the waiting 

processors compete to take hold of it. In the case of 

barriers, many processors must be synchronized and then 

released. This is a typical case for barrier synchronization 

where each processor busy-waits on a locked counter to see 

if it reached a certain value. Such activity often causes hot 

spots in the memory system interconnect.  

It can be seen that synchronization algorithms will perform 

well under low-contention periods over NoC, but under 

high-contention periods there is a need to incorporate 

additional mechanisms into NoC and NOC interfaces for 

more efficient synchronization. 

There has been already a substantial work performed in this 

field of software and hardware support for Locks in the 

context of multiprocessors and CMPs  [24] [25] [26] . Most 

of the hardware methods mainly focus on maintaining a list 

of nodes waiting on a lock and which is maintained entirely 

in hardware and the releaser grants the lock to one of the 

waiting nodes on a list without affecting others.  

Implementing such subscription mechanism for lock at NoC 

interface over Priority-based NoC will eliminate busy wait 

over network. It may reduce the lock handover time as well 

as the interference of lock traffic with data access and 

coherence traffic. 

4. Numerical Evaluation 
We evaluated the schemes proposed in Section 3 through 

simulation. In Subsection 4.1 we present the simulation 

environment used, which includes CMP and NoC 

simulators and a description of the evaluated CMP 

benchmarks. In Subsection 4.2 we present the simulation 

results that demonstrate the advantages of the priority-based 

NoC approach over the Vanilla NoC in terms of cache-

access delay and overall program speedup. 
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4.1 Simulation Environment 

4.1.1 CMP and NoC Simulators 
The NoC-based CMP system illustrated in  Figure 1 is fully 

modeled by combining two cycle-accurate simulators. 

Simics  [28] is used for simulating parallel programs 

execution in CMP and producing L2 access traces which 

are fed into an OPNET-based NoC simulator  [9]. 

The system that is modeled in Simics comprises a 8-

processor CMP design, using the x86 in-order processor 

model as a building block. Each processor has a private, 2-

way set associative, 64KB L1 data cache, and all processors 

share a 16MB, 16-way set associative L2 data cache. 

(Instruction caching is not implemented, but instructions are 

assumed to be available with no delay). Cache block size is 

64 bytes for both L1 and L2. 

The L2-access traces from Simics include L2-transactions 

and the inter-transaction delays, which represent the times 

at which the processor uses its L1-cache without accessing 

L2. These traces are fed into the OPNET-based tool which 

simulates the full directory-based coherent cache-access 

mechanism over NoC which was described in Section 3. 

The developed OPNET models include the Vanilla and the 

Priority-based NoCs and the NoC interfaces for coherent 

CMP communication (see Section 3). Both the Vanilla and 

Priority-based NoCs are grid-based wormhole NoCs, 

similar to  [9] with static XY routing mechanism and equal 

capacity for all links. Flit size is 16 bit and the buffer size at 

routers is 4 flits. The clock frequency of the processors is 

10 GHz. 

4.1.2 Evaluated Benchmarks 
We run Mandrake 10.1 Linux with SMP kernel version 2.6, 

custom-compiled to interface with Simics, on top of which 

we run Linux programs as benchmarks. Our benchmarks 

include three SPLASH-2 benchmarks [29]: (Fft, Ocean and 

Radix), and two static web content serving (Apache HTTP 

server and Zeus web server). For both web benchmarks, we 

use the SURGE [30] toolkit to generate a workload of web 

requests from a 30,000-file, 700MB repository with a zero 

back-off time. This toolkit generates a Zipf distribution of 

file accesses, which was shown to match real-world web 

workloads (used by SpecWeb2005). 

Typical parallel benchmarks begin with some setup code, 

which is run serially, and only then embark on parallel 

processing. Since we are interested in the parallel part of 

the applications, we fast forward through the serial part and 

performed the measurements only in the parallel part of the 

code.  

4.2 Simulation Results 
We simulated about a million instructions per each 

benchmark. The measured delay of transaction is calculated 

from the time that the processor writes the transaction into 

its NoC interface queue until the processor receives the 

requested cache-line from L2. In other words, the overall 

delay consists of the queueing time at the processor 

interface, the end-to-end (ETE) NoC delay towards the L2-

bank, the queuing delay at the L2 interface, the delay of 

possible invalidation or write back procedures, and finally 

the ETE NoC delay from L2 to the requesting processor.  

We measure the total L2-access delay of both read and read 

exclusive commands. These commands are extremely 

performance critical since they stall the processor. We also 

measure the total program throughput which is the number 

of executed commands. Although we fully simulate writes 

resulting from eviction from L1-cache, we do not include 

them in the average delay calculation since they do not 

affect the performance of the processors (these writes do 

not cause processor stalls). 
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Figure 8. Average delay of L2 Read Transaction using Vanilla and 

Priority-based NoCs in the Apache benchmark as a function of 

different link capacities 

 Figure 8 demonstrates the distribution of L2 read 

transactions average delays in the Apache server benchmark 

for Vanilla and Priority-based NoCs as a function of link 

capacity in the network. The graph shows that the delay of 

L2 transactions is affected by the NoC link capacity or 

alternatively by the network load. When the NoC is lightly 

loaded then the read delays are relatively small. During 

high network loads the L2 access delays can become 

extremely large. A similar behavior is observed in read 

exclusive delays. 

 Av. Delay Reduction of L2-Transaction in Apache

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 4 16

Link Capacity [gbps]

D
e
la

y
 R

e
d

u
c
ti

o
n

 [
%

]

Read

Read Exclusive

 

Figure 9. Read and Read Exclusive average delay reduction in apache 

as a function of different link capacity 

One can also observe from the graph that the delay 

improvement achieved using a Priority-based NoC is 
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growing with the network load.  Figure 9 quantifies the 

delay reduction that can be achieved by using a Priority-

based NoC in both read and read exclusive transactions in 

the Apache benchmark. As expected, the major delay 

reduction is achieved in a highly loaded network with a 

large contention over the network resources. In such cases, 

the priority based mechanism allows for short control 

messages to bypass long worms that are blocked in the 

network. It achieves a delay reduction of 26% and 24% for 

regular and exclusive read respectively in a heavily loaded 

NoC, and a 10% delay reduction for both read and read 

exclusive transactions in a lightly loaded NoC.  

We also explore the potential delay reduction of using a 

Priority-based NoC compared to the Vanilla-approach 

across several benchmarks over a medium loaded NoC. The 

results summarized in  Figure 10 clearly show the advantage 

of Priority-based NoC over Vanilla approaches.  
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Figure 10. Average L2 access delay reduction in read and read exclusive 

transactions by using Priority-based NoC over several benchmarks 

The actual L2-transaction delay as well as the delay 

reduction of the Priority based approach are a function of 

many factors that depend on the system and the 

benchmarks. These include the frequency of L2-access (or 

inter-transaction delay), the load of the actual routing path 

in the network, the amount of read-write sharing in the 

benchmark and as a result the amount of invalidations and 

write backs, the number of sharers that need to be 

invalidated during each invalidation, the distance from the 

desired L2 bank and finally the contention on that bank. 

Despite this complication, using simple and low-cost 

Priority-based NoC approach we succeed to achieve a 

substantial delay reduction across a variety of benchmarks. 

The maximal delay reduction reached 33% in FFT read and 

28% in Zeus read exclusive transactions.  

Finally, we examine the total application speedup using a 

Priority-based NoC. The results are depicted in  Figure 11. 

We observe that the priority-based NoC improves the 

overall system performance in all benchmarks. The best 

improvement is achieved in Zeus, which boosts overall 

system performance by 9.4%. The system performance 

improvement strongly depends on the amount of L2-delay 

reduction and the frequency of L2-access in the benchmark. 
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Figure 11. Overall Program Speedup by using priorities over several 

benchmarks 

5. SUMMARY 
We explored the NoC communication paradigm associated 

with cache coherency of static and dynamic NUCA CMP 

and its basic mapping over a Vanilla-NoC system, including 

the details of processor and L2 network interfaces. The 

main contribution of the paper is the extension of the 

vanilla NoC and processor interface with a simple and low 

cost priority mechanism. Such Priority-based NoC is 

capable of differentiating and prioritizing short control 

messages from long data packets. This generic approach fits 

and expedites almost any CMP communication task (i.e 

uncached and cache-coherent R/W, search in DNUCA, 

isolating low priority traffic, synchronization and mutual 

exclusion support) for any proposed coherency-protocol 

modifications. In particular, we show how to boost 

performance of directory-based coherency protocol using 

priority-based NoC, while maintaining coherency 

correctness. We show how to further enrich the unicast-

based communication services of such a Vanilla NoC by 

Advanced-services NoC mechanisms such as: virtual 

invalidation rings, efficient store-and-forward multicast for 

short messages which is embedded within a wormhole NoC, 

and a cache-line search mechanism for the efficient 

operation of dynamic NUCA. In addition to cache 

coherency operations, these mechanisms can also improve 

other basic CMP transactions such as search and 

synchronization support. Detailed CMP-NoC simulations 

show an impressive (up to 33%) reduction in L2-access 

delay by using priority-based NoC instead of the simplistic 

Vanilla-NoC across a variety of benchmarks. The 

simulations also demonstrate a substantial total system 

speedup in all simulated benchmarks (up to 9.4% speedup). 
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