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Abstract – A hardware scheduler for many-core architectures 

enables fast scheduling and allocation of fine granularity tasks 

to all cores. We present performance evaluation of a hardware 

scheduler for HyperCore, a many-core architecture. The 

evaluation is based on an architectural simulator, using 

multiple benchmarks representing a wide variety of inherent 

parallelism. Several architectural improvements are proposed, 

and various configurations of the scheduler are simulated. The 

results are analyzed, and are used to highlight the potential 

and the possible pitfalls of the architecture. It is shown that a 

scheduler with a capacity to schedule and terminate 10 

instances per cycle, along with a task queue of as little as two 

slots near each core, is sufficient to utilize 256 cores. Other 

scheduling configurations are also analyzed. 

Keywords – hardware scheduler; many-core; performance; 

task queues 

1 INTRODUCTION 

Today, chips are produced with a small number of cores 

(multi-core). This enables handling them similarly to a uni-

processor; memory access and scheduling of processes to 

cores are similar to what is done in a single core. But to 

keep up with the need for increased performance, the 

number of cores will have to grow. Several many-core 

architectures already exist. Such architectures include 

NVIDIA [1] and ATI GPUs and Tilera tiles [2], as well as 

proposals such as Plurality HyperCore [3], XMT [4], Intel 

Larrabee [5] and 2PARMA [6]. 

Unlike current multi-core solutions, many-core 

architecture requires new tools and techniques in order to be 

utilized efficiently. While many research works handle the 

subject of network, communication, memory [7] and cache 

[8] performance problems, the scheduling problem is 

somewhat less investigated. Unlike multi-core systems, 

scheduling in a many-core system requires great efficiency 

in order to utilize hundreds or even thousands of cores. This 

need prohibits the use of a software scheduler, since it 

imposes a large overhead on the scheduling process. While 

solutions that incorporate static scheduling during compile 

time exist [9] [10] [11], they cannot dynamically schedule 

tasks according to run-time workload. Hardware schedulers, 

on the other hand, enable such advantages and hold more 

promise for efficient many-cores [4] [12] [13] [14] [15] 

[16]. 

In this research, we present performance analysis of a 

hardware scheduler. We study the HyperCore architecture, 

and find the rules useful for developing a hardware 

scheduler for many-core architecture [17]. By analyzing the 

phenomena that occur in multiple benchmarks, we are able 

to highlight the pitfalls that a many-core designer might 

stumble upon. Several architectural improvements are 

proposed, including a queuing hierarchy. Scheduler 

parameters such as the scheduling latency, the scheduler 

capacity and task queue depth are simulated, and insights 

about their effect on overall system performance are 

presented. 

The rest of this paper is organized as follows: Section  2 

discusses related work. In Section  3 we present the 

HyperCore architecture. Proposed solutions for scheduler 

limitations are given in Section  4. In Section  5 we describe 

our simulation environment and benchmarks, as well as 

explain our format of presetting simulation data. Analysis of 

simulation results is presented in Section  6, and finally we 

conclude and describe future work in Section  7. 

2 RELATED WORK 

Several many-core architectures have been investigated. 

Tilera [2] offers a tiled architecture following RAW [18]. 

Multiple identical, programmable tiles having local caches 

are connected by multiple mesh NoCs. Extensions are 

proposed in [19] [20], and a use case is presented in [21]. It 

employs static compile time scheduling [9] that orchestrates 

parallelism within a basic block across tiles and also handles 

control flow across basic blocks. Processes are allocated to 

rectangular-shaped tile groups. Compiler and allocation 

enhancements can be found in [10], [22]. Instead of static 

scheduling, this paper discusses a hardware scheduler that 

enables dynamic load-balancing. A dynamic scheduler for 

Tilera is presented in [23], where system threads execute 

tasks from a task queue. Still, scheduling is software based, 

incurring longer overhead than a hardware scheduler. A 

more general treatment of NoC-based scheduling is given in 

[24].  In Rigel [25], another many core architecture with 

task-queue software scheduling, the cores are organized 

hierarchically in clusters and a bulk-synchronous 

programming model is employed. 

NVIDIA Fermi [1] GPU comprises multiple SIMD 

processors. A hardware scheduler switches threads in order 

to hide memory latency. GPUs are efficient when 

processing many threads with same control flows. A task-

based dynamic load-balancing solution is proposed in [26], 

using a persistent kernel which executes tasks from a task 

queue. A method for load-balancing across the CPU as well 

is given in [27]. Intel Larrabee [5], another GPU, combines 

many cores instead of many threads. The similar 

architecture Intel MIC is described in [28], demonstrating a 



 

distributed task-stealing software scheduler. In contrast, this 

paper investigates a hardware scheduler.  

XMT [4] [29] uses a programming model based on 

PRAM with arbitrary CRCW (concurrent read concurrent 

write) SPMD and incorporates hardware prefix-sum logic to 

schedule same-code threads. It shows good performance for 

fine-grained tasks and irregular applications. Unlike our 

architecture, XMT threads explicitly call the hardware 

scheduler (using a PS instruction). Further, XMT can 

execute the multiple instances of only one task at a time. 

Grid Processor Architectures (GPA) [30] consists of a two-

dimentional array of ALUs, each with limited control, 

connected by a thin operand network. Compilation and 

scheduling of instructions to ALUs is static, whereas 

execution is dynamic in dataflow order.  

Hardware schedulers for a small number of cores are 

described in [12] and [13]. In the latter, hardware steering 

logic allocates strands (chains of dependent instructions) to 

cores based on inter-strand dependencies. Hardware 

scheduling for Godson-T is described in [31] [14], 

comparing also fine grain to barrier synchronization and 

managing instance dependencies in addition to coarser task 

dependencies. Carbon [32] and ADM [33] use hardware 

task queues to support scheduling. In the Data-Driven 

Multithreading (DDM) [34], [16] design, a hardware 

mechanism provides data-driven thread synchronization for 

multi-threaded architectures that uses control flow 

processors. Scheduling follows a task map created by the 

programmer, using a producer-consumer programming 

model. Task Superscalar [15] generalizes the concept of 

instruction-level out-of-order execution to tasks, detecting 

task-level parallelism in run time, but software scheduling 

incurs high overhead. Real-time scheduling manages not 

only starting tasks but also constraints on finish time of 

tasks. Hardware real-time schedulers are described in [35], 

[36]. Energy-efficient real-time scheduling is presented in 

[37].  Finally, the Tatung fine grain scheduler (TFGS) [11] 

operates at the machine instruction level, using a 

data/control dependency graph, a branch nest tree and a 

priority list to create a static scheduling prior to execution. 

At runtime, test bits synchronize the processors and notify 

of branch decisions. 

3 HYPERCORE ARCHITECTURE 

This section presents the HyperCore architecture, the 

programming model, and the hardware scheduler. 

3.1 Architecture 

The HyperCore architecture (Figure 1) is a shared-

memory many-core system [3] [38] [39] [40]. It has a 

hardware synchronization and scheduling unit, 16-256 RISC 

cores, and a shared on chip memory that is accessed through 

a high-performance interconnection network. 

The cores themselves are simple general-purpose 32-bit 

RISC processors. The cores do not have any data cache, and 

thus no coherency logic is needed. A small instruction cache 

is used to enable efficient access to code. The cores use 

blocking data load and store with no out-of-order execution, 

and run each task instance to completion (no task switching 

is allowed). 

 
Figure 1: HyperCore architecture 

The shared memory is organized in a large number of 

banks, to enable many ports that can be accessed in parallel 

by the many cores. To reduce collisions, addresses are 

interleaved over the banks. The cores are connected to the 

memory banks by a many-to-many interconnection network 

that can serve simultaneous accesses from all cores. The 

network detects access conflicts contending on the same 

memory bank, proceeds serving one of the requests and 

notifies the other cores to retry their access. The cores 

immediately retry a failed access. Two or more concurrent 

read requests from the same address are served by a single 

read operation and a multicast of the same value to all 

requesting cores.  

All memory accesses from each core to each memory 

bank take a constant time of two cycles if there are no 

conflicts. Since the HyperCore is designed as a single clock 

system, the clock cycle time is limited by the longest wire 

delay between any core and any memory bank. 

The possible states of each core are shown in Figure 2. A 

core starts in Idle state. Once allocated a task for execution, 

it becomes Busy. When it encounters a memory access 

operation, it is either Waiting (if the memory access will 

succeed) or Colliding (if it is about to collide). Once 

completing a task, it moves back to Idle. 

CollidingWaitingBusyIdle

 
Figure 2 : Core state transition graph 

3.2 Programming Model 

The programming model of the HyperCore is based on 

multiple sequential tasks and their inter-dependencies. The 

programmer defines the tasks, as well as the list of 

dependencies, formulated as a (directed graph) task map. 

The tasks are executed by the cores, while the task map is 

executed by the scheduler. Some tasks may be duplicable, 

accompanied by a quota that determines the number of 

instances that should be executed; all instances are mutually 
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independent and may be executed in parallel or in any 

arbitrary order. The instances are distinguishable from each 

other merely by their instance number. Ideally the instances 

do not share data, and their execution time is short (fine 

granularity). The scheduler distributes the tasks that are 

eligible for execution among the available cores at that 

moment.  
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Figure 3 : Demo benchmarks task maps: (a) Normal, (b) 

Parallel. Benchmarks task maps : (c) JPEG, (d) Linear Solver 

Figure 3 shows a few task maps. Squares represent tasks 

(named A, B, C, …) and show the number of required 

duplications and the number of cycles it takes for one 

instance to complete. Arrows represent task dependencies. 

A task is eligible to run only when all its predecessors have 

completed. The rhombus represents a condition and is 

executed only by the scheduler; there is no real code 

associated with condition tasks. In the "Normal" benchmark 

(a) for example, the condition controls task looping: The 

scheduler goes back to task A (for another invocation) for 4 

times, and then proceeds to task F. 

3.3 Scheduler 

The hardware scheduler assigns tasks to cores for 

execution. A core which completes its task sends a 

termination message to the scheduler. The scheduler then 

allocates a new task to the core using the task map. The 

Scheduler communicates with the cores over the Scheduler 

Network (SN), as in Figure 1. 

Each task progresses through four states, as in Figure 4. 

It starts as pending, when it waits for its predecessors to 

finish. It then becomes ready and the scheduler may 

schedule its instances for execution and allocate them to 

cores. Once all its instances have been scheduled, it is 

completely allocated. And once all its instances have 

terminated it moves into the finished state. 

Finished
Completely 
Allocated

ReadyPending

 
Figure 4 : Task states 

The number of simultaneous tasks which the scheduler is 

able to terminate or allocate during each cycle is limited. 

Any additional termination message beyond the scheduler 

capacity awaits the following cycles in order to be 

processed. The same applies to any additional task 

allocations beyond the scheduler capacity. A core remains 

idle from the time it issues a termination message until the 

next task allocation arrives. That idle time comprises not 

only the delay at the scheduler (wait and processing times) 

but also any transmission latency of the termination and 

allocation messages over the scheduler-to-cores network.  

4 SCHEDULER MODIFICATIONS 

As described above (Section  3.3), the scheduler 

(including the SN) may be limited in terms of capacities and 

latencies. In this research we investigate, by simulations, 

how these limitations may affect system performance, and 

explore possible solutions as follows: 

1. Enhancing scheduler capacity: The scheduler can 

process only a limited number of termination and 

allocation messages each cycle. For fine granularity 

tasks, many tasks may need to be invoked or terminated 

simultaneously. Several ways can be used in order to 

achieve this increase, from enhancing the Scheduler to 

enhancing the SN. In this study we do not distinguish 

among these methods, and use the overall scheduler 

capacity as a single parameter. To simplify things further, 

we also assume a similar capacity for the termination and 

allocation processes. This assumption seems reasonable 

for a balanced Scheduler. 

2. Reducing scheduling latency: Latency is incurred due to 

two factors: network delay between the scheduler and the 

cores and processing time in the scheduler. We study the 

overall latency between core termination time and next 

allocation time. Latency may be reduced by constructing 

a more powerful Scheduler and constraining the physical 

distance between the Scheduler and the cores. 

3. Adding task queues to each core: A core is idle from the 

time it completes a task until the next task allocation 

arrives at the core. In order to cope with this problem, we 

suggest adding a task queue near each core. This queue 

will hold additional available tasks for the core. When the 

core finishes its current task, it already has another task 

available to start working on. Several queue depths are 

tested in this research in order to understand their effect 

on system behavior. 

4. Sharing queues: After the addition of task queues, cases 

may occur when load imbalance degrades system 

performance. In order to implement a simple work-

stealing algorithm, we propose sharing a task queue 

among several cores, thus creating core clusters. We 

show that this simple change in architecture restores 

balance to the system in most cases. 

We study a modified HyperCore architecture comprising 

256 RISC cores and 256 memory banks, and introduce a 



 

queue with variable depth near each core. The scheduler is 

able to allocate and receive termination messages of a 

configurable number of tasks instances. The allocation and 

termination algorithms are shown in Figure 5. 

5 SIMULATION ENVIRONMENT 

The study is based on an architectural simulator 

implemented in Matlab, developed in [7]. The simulator is 

cycle accurate and allows investigating parallel execution 

under different architectural variations. In this work, we 

have added the scheduler part to the above simulator, and 

implemented the modifications described in Section  4. 

 

 
Figure 5 : Allocation (top) and Termination (bottom) 

algorithms 

Four benchmark programs (explained in Section  5.1) 

were simulated on 24 different configurations of the 

architecture, as follows: 

 Four values of task queue depth: 0, 1, 2, 10 

 Three values of scheduler capacity: 5, 10, infinite 

 Two levels of latency between the scheduler and the 

cores: 0 and 20 cycles (in the following, only results 

related to 20 cycles latency are presented as they are 

more meaningful). 

All configurations employed 256 cores and 256 memory 

banks. Preliminary simulations revealed that other values of 

task queue depth were insignificant: performance was quite 

similar for both 2 and 5 queue depths. Similarly, increasing 

that value beyond 10 did not affect the results much. Note 

that scheduling latency occurs both from the scheduler to 

the cores (for allocation messages) and from the cores to the 

scheduler (for termination messages). 

5.1 Benchmarks 

A benchmark program consists of tasks, some of which 

are duplicable and some are conditional. Running a program 

requires the program’s task map and the code of each task. 

A task map includes the program task names, the task 

dependencies and the number of duplicated instances for 

each task. 

Two demo programs were tested. These programs have 

the same task map with variations that are aimed to 

investigate a range of parallelism. The demo programs are: 

- Normal: the program with a moderate number of 

duplications. 

- Parallel: same as Normal, but with many more 

duplications for each task. 

Figure 3 shows the task map of the demo programs and 

two additional benchmarks: JPEG image compression 

(image 160x160) and a Linear Solver benchmark. Task 

maps are explained above in Section  3.2. 

5.2 Simulation details 

For each of the above benchmarks, statistics have been 

gathered in order to explore the phenomena that can be 

encountered in real life programs. Computing only the total 

number of cycles each program took may mask the reasons 

for those results, preventing us from analyzing them 

properly. More detailed statistics were needed, to show what 

is done by each part of the architecture on each cycle of the 

program. The first statistics that were gathered show for 

each cycle how many cores are busy, idle, waiting or 

colliding. Through it, one can observe certain points within 

the program that are hard for the scheduler to handle. For 

example, points where the cores are idle though tasks that 

are ready to run are available. The second set of statistics 

tell the tale from the cores’ point of view; for each core, the 

number of cycles the core was busy, idle, waiting or 

colliding is shown. 

Results of the above statistics and analysis show that 

different programs behave differently. A detailed analysis of 

each benchmark is given in Section  6. Two kinds of graphs 

are presented, each for the appropriate statistics. The first 

one is "Activity per cycle" (e.g. Figure 9). In those graphs 

the X-axis shows cycles of program execution and the Y-

axis shows cumulative core activity in each cycle. The 

second graph is "Activity per core" (e.g. Figure 6). In those 

graphs the X-axis is the core index, and the Y-axis shows 

the cumulative activity for each core. 

For each of those graph, we show 12 charts related to the 

12 configurations (task queue depth of 0, 1, 2 or 10 and 

scheduler capacity of 5, 10 or infinity). Queue depth 

increases towards the right-hand side of each graph and 

scheduler capacity increases when going down over the 

charts.  

6 ANALYSIS OF SIMULATION RESULTS 

We first describe simulation results for each of the four 

benchmarks, and then compare the results to each other. 

6.1 “Normal” Benchmark 

Figure 6 shows an "Activity per core" graph for the 

"Normal" benchmark in the 20 cycles latency scenario.  

Latency is incurred for both the allocation (Scheduler to 

cores) and termination (cores to Scheduler) messages. 

1. Find all Ready tasks. 
2. Choose one of the Ready tasks. 
3. While there is still enough scheduler capacity 

a. Find the core queue with fewest instances (if 
several such queues exist, choose the lowest 
index queue) 

b. Allocate an instance to that queue  
c. Increase counter of instances in that queue 
d. Increase counter of allocated task instances  
e. If a task is Completely Allocated, continue to next 

task 

1. Choose lowest index core which has sent a 
termination message 

2. While there is still enough scheduler capacity 
a. Process termination message 
b. Decrease counter of instances in queue  
c. Increase counter of finished task instances  
d. If the task is Finished, find new tasks that are 

eligible to run and change them to Ready state 
e. Continue to next core  



 

Observe that there is a drop in the total run time (when the 

capacity is high enough) as we move from no task queue to 

only one slot per queue. The reason is that the queue acts as 

a buffer to hide some of the latency between the scheduler 

and the cores. 

By examining the last line of charts (infinite capacity), it 

is possible to see that the overall run time increases from 

1410 to 1470 cycles as the queues depth is increased. This 

result is unexpected, and may be explained as follows. 

Consider the scheduling balance among different cores, and 

observe that when the queue depth increases, the working 

load spreads unevenly among the cores. That is, lower index 

cores perform more work than higher index ones. Studying 

the statistics of that imbalance clearly shows the reason for 

the phenomenon. Each cycle, the imbalance in the 

scheduling is measured by counting the number of idle cores 

versus the number of ready tasks waiting to be executed by 

a busy core (namely, ready to run instances waiting in the 

queue of an already busy core). The results can be seen in 

Figure 7. As the queue gets deeper, more imbalance occurs. 

In the case of a no queue, no imbalance is possible (the 

scheduler assigns a new job to a core only after the last job 

has finished). In the case of low scheduler capacity, the 

scheduler does not work fast enough to fill more than one 

task per core (it schedules idle cores first), as already seen 

by the fact that it does not utilize the high index cores well. 

When unbalanced load does occur, it means that some cores 

are idle while there is a job to be done, and so time is wasted 

and the program total run time gets longer. 

When we compare the results for the 20 cycles latency 

(Figure 6) against the no latency simulation (not shown), we 

find that the total run-time has increased (e.g. from about 

950 cycles in the capacity=inf, queue depth=10 in the 

latency=0 case, to roughly 1470 cycles in the latency=20 

case, Figure 6). Taking a second look into the task map 

helps answer this puzzle. The latency that is now inherent in 

the system means that every time the scheduler sends a task 

to the cores, 20 cycles pass before execution can start. 

Similarly, when a core completes the task and sends a 

termination message to the scheduler, again 20 cycles pass 

before the scheduler can send the next task. Therefore, in 

each synchronization point in the task map (where the 

scheduler waits for some tasks to finish in order to start 

scheduling new tasks), a 40 cycles latency is encountered. In 

this benchmark, for example (Figure 3), the scheduler needs 

to wait for both task C and task D to finish before task E can 

be assigned to the cores. This synchronization point's 

latency cannot be compensated for by the task queues, 

because only when the queues are all empty can the 

scheduler assign the new task. Counting all the 

synchronization points in the program and the fact that the 

task map is repeated four times, the difference of 500 cycles 

in the total run time can be accounted for. 

 
Figure 6 : Activity per core in Normal benchmark,  

Latency = 20 cycles 

 
Figure 7 : Unbalanced scheduling per cycle in Normal 

benchmark, Latency = 20 cycles 

6.2  “Parallel” Benchmark 

The parallel benchmark (Figure 3(b)) is different from 

the normal benchmark (Figure 3(a)) in the number of 

instances each task has. Figure 8 shows the Activity per core 

for 20 cycles latency. In this case, the low capacity 

scheduler is still unable to utilize all the cores, thus not 

taking advantage of the vast parallelism. Increasing the 

capacity just by a little (to 10 instances per cycle, second 

row of Figure 8) enables the scheduler to reach its full 

potential as seen by the low idle time of the system. As for 

infinite capacity (last row of the figure), the number of tasks 

is so great that no unbalanced work distribution takes place 

(there is always work for everyone). 

Here we witness again the effect of the 20 cycles latency 

on the program run time. When there is no task queue, the 

latency between the scheduler and the cores is just the same 

as extending the tasks run time. For instance, consider the 

capacity=inf, queue depth=0 case (bottom left chart in the 

figure) and assume perfect balancing. We have 

(2000+2500+2600+2300)×4 tasks (as per the task map), 

each suffering a 40 cycles latency. When distributing this 

latency over the 256 cores, we get an additional idle time of 

(                   )   [       ]  
  [      ]

   [     ]
     [      ]. On the other hand, adding as 



 

little as two slots to each core's queue (from queue depth=0 

to 2, third column in the figure) enables hiding most of the 

latency and obtaining results similar to those with no latency 

at all. The only difference is the synchronization points 

where the latency cannot be compensated for. 

 
Figure 8 : Activity per core in Parallel benchmark,  

Latency = 20 cycles 

Observing the first line of charts in Figure 8, we notice 

that work distribution is again unbalanced. The latency has 

effectively increased the tasks run time. In turn, this should 

have made the work more balanced, as now the scheduler 

has enough time to assign work to high index cores. 

However, this does not take into account the queues role. 

The lower index cores, which receive the first tasks, also get 

a second task into their queues before they finish their jobs. 

This second task does not suffer from any latency, since the 

cores had work to do until they got them. For the higher 

index cores, unfortunately, the second task comes only after 

they already finished their work. So, they suffer the latency 

penalty for both the report back to the scheduler and for the 

scheduling of the new task. This makes them work less than 

the other cores, and hence the results. We may conclude that 

queues help hide latency only if scheduler capacity is 

sufficiently high. 

6.3 JPEG Benchmark 

The JPEG benchmark leads to another strange 

phenomenon (Figure 9): employing a task queue for the 

cores significantly degrades system performance. The 

scheduler capacity itself has no effect, due to task long run 

times, which enable the scheduler to reach the high index 

cores before any low index core finishes its work. Consider 

scheduling imbalance; the charts in Figure 10 show the 

number of cores, each cycle, which remain idle although 

work ready for execution is waiting in some other queues. 

Notice that in addition to the peaks, there are also tails that 

indicate a small number of ready tasks that are stuck in 

some queues when there are also idle cores elsewhere. 

Note that at one point during the program execution all 

the cores are waiting for one core to complete (e.g. the one 

busy core between 10,000 and 15,000 cycles in the three 

columns on the right in Figure 10). This period matches 

exactly the time in which almost all cores are idle (yellow 

sections in Figure 9). When considering the JPEG task map 

(Figure 3), we notice that task E is much longer than all 

other tasks. When there is no queue, this task is executed 

along the other tasks, and when it finishes only task F is left 

to run (the second block of work visible in the left column 

in Figure 9). With a non-zero queue, however, another 

instance is assigned to the core that works on task E. This 

instance comes from task G in this case. Now, when task E 

is finally over, task F is ready to run. But task G has not 

completed yet, and so task H is not assigned to any core. 

Only when the last instance of task G (which has waited for 

task E to finish) is over, can the scheduler start assigning 

task H (as can be seen in the third block of work being done 

on all the queued configurations). In conclusion, task queues 

may degrade system performance in some cases, and thus 

need to be treated with caution. Those cases occur when 

there are (very) coarse grained tasks in the task map. 

 
Figure 9 : Activity per cycle in JPEG benchmark,  

Latency = 20 cycles 

 
Figure 10 : Unbalanced scheduling per cycle in JPEG 

benchmark, Latency = 20 

We can see in this example that even though only one 

instance suffers from unbalanced scheduling between the 

cores, the results can be quite devastating to overall system 

performance. In order to cope with this scenario, several 

solutions are suggested: 

1. Queue sharing among multiple cores, requiring more 

complex hardware 



 

2. Using fine granularity tasks 

3. Scheduling awareness of long tasks [41], possibly 

requiring a more complex scheduler 

4. Task migration among queues, possibly requiring more 

complex hardware and enhanced  communication 

bandwidth, and incurring higher power and latency 

5. Task map optimization [41] 

6. Pipeline multiple instances of an algorithm (e.g. image 

compression applied to a sequence of image segments) so 

that parallel sections of one instance overlap the serial 

bottlenecks of other instances. 

The first two solutions have been simulated and are 

presented in the following sections. The other four solutions 

were not simulated, and are offered for future research. 

6.3.1 Shared Queues 

In order to handle unbalanced scheduling (where ready 

tasks wait for a core to finish its work although there may be 

other cores that are idle), queue sharing among several cores 

can be implemented. In that architecture, the scheduler 

assigns work to a cluster of cores, such that a task pool is 

formed, and each core in the cluster can pick up a new job 

from the pool once it has finished its old job. 

In our case, each cluster contains two adjacent cores 

(having two consecutive index values). That is, cores 2i and 

2i+1 share a common queue (i = 0, 1, 2, …, 127). The 

scheduler assigns tasks to empty queues first (namely, one 

task to the queue of cores 0 and 1, the next task to the queue 

of cores 2 and 3, etc.). In each cluster, the core which is idle 

can take the next task from the queue. The queues holding 

termination messages are not shared. Notice that a task 

queue depth of 1 means one job per core, which are two jobs 

per queue. 

 
Figure 11 : Activity per cycle in JPEG benchmark with shared 

queues, Latency = 20 cycles 

With shared queue (Figure 11), the waiting time for task 

E to finish is exploited working on other tasks, since task G 

does not get stuck behind it. This solves the problem in our 

case. Caution may be needed when employing this solution 

in the architecture, since scenarios still exist when a cluster 

is assigned several long tasks, creating scheduling 

bottlenecks as described above. 

6.3.2 Fine Granularity Tasks 

Observe that the only reason for the above phenomenon 

is the existence of long tasks. A trivial solution is to 

eliminate long tasks by breaking them into smaller ones. 

One way to achieve that is to restrict the programmer to 

writing only small tasks. Alternatively, we investigate 

decomposing long tasks into a series of short ones. In the 

JPEG example, long task E is replaced by 3 shorter tasks 

E1, E2, E3, as in Figure 12. The results are presented in 

Figure 13, showing improved performance (shorter total run 

time compared to Figure 9). Additional improvements may 

be achievable by decomposing task E further and by also 

decomposing task C. 
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Figure 12 : Task E of the JPEG Benchmark decomposed into 

three equal parts. 

 
Figure 13 : Activity per cycle in the fine granularity JPEG 

benchmark, Latency = 20 cycles 

6.4 Linear Solver Benchmark 

This benchmark is highly parallel as seen by the great 

amount of instances of task G in the task map (Figure 3). In 

the simulation too (Figure 14) it is clear that most time all 

cores are busy, without much access to memory. One slot of 

task queue is sufficient to hide the latency and recover the 

performance of the system without latency. The scheduling 

capacity can remain low in this benchmark since the tasks 

are long enough to enable the scheduler to assign work to all 

cores. 

6.5 Benchmarks Analysis 

In this section, several comparisons of the different 

benchmarks are presented in order to illuminate the 

compromises a designer must make in a many-core 



 

architecture to support different programs and their unique 

attributes. 

 
Figure 14 : Activity per core in Linear solver benchmark, 

Latency = 20 cycles 

6.5.1 Total Run Time 

Figure 15 shows the total run time of each benchmark 

for each configuration of queue depth and scheduler 

capacity. The red surface represents the no latency case, and 

the blue surface is for the 20 cycles latency scenario 

(latency from the Scheduler to the cores and vice versa). 

Notice variations along the Queue Depth axis: aside from 

the JPEG benchmark, where increasing the queues causes an 

increase in the total run time (explained by scheduling 

imbalance in Section  6.3), adding of as little as a two slots 

queue to each core can compensate for most of the latency 

between the scheduler and the cores. Where there is no 

latency, the queues obviously do not improve performance; 

fortunately, they do not degrade performance. Considering 

the Scheduler Capacity axis, observe that increasing 

scheduler capacity mostly helps performance. A capacity of 

10 instances per cycle is sufficient to reach maximum 

utilization of the cores. 

In summary, an architecture where each core has a 2 slot 

queue, and the scheduler has the capacity of scheduling 10 

instances each cycle, suffices to utilize 256 cores in most 

cases even in the presence of long latency between the 

scheduler and the cores. 

6.5.2 Load Balancing 

Another important aspect of scheduling is balancing 

work among the different cores. Such balance can for 

example distribute the power and heat throughout the entire 

chip, thus enabling higher clock frequency and better overall 

performance. 

Figure 16 presents standard deviation of the total busy 

times of all cores. As expected, removing the queues (0 

Queue in the graphs) results in a lower STD, meaning the 

work is more balanced among the cores. Also, increasing 

scheduler capacity enables the scheduler to reach the high 

index cores, and distribute the work more evenly among the 

cores. 

 
Figure 15 : Total run time vs. queue depth and scheduler 

capacity 

 
Figure 16 : STD of cores busy time 

 
Figure 17 : Effective scheduling latency, Latency = 20 cycles 

6.5.3 Effective Allocation Latency 

In half the simulations, a 20 cycles latency was inserted 

between the scheduling of a task and the core receiving that 

task. Queues were added in order to compensate for this 

latency. Figure 17 shows how well the queues worked. For 

each instance that was scheduled by the scheduler, the time 

that was wasted until it arrived at the queue was counted. 

That is, if the core to which it was destined was idle, the 

entire 20 cycles latency was counted. If, on the other hand, 

the core was busy during the entire 20 cycles, then the 

latency was hidden and not counted. The effective latencies 

that each instance suffered were averaged over all the 

instances in the program, and are presented in the figure. 



 

When there is no queue, each instance suffers the entire 20 

cycles latency. Adding a one slot queue, however, is 

sufficient to hide much of the latency, even when 

scheduling capacity is low.  

7 CONCLUSIONS AND FUTURE WORK 

In this paper we have analyzed how the performance of a 

many-core architecture depends on the hardware scheduler. 

The scheduler was simulated with various configurations. 

We conclude that an architecture where each core has a 2 

slot queue, and the scheduler is capable of scheduling 10 

instances each cycle is sufficient to efficiently utilize 256 

cores in most cases even in the presence of long latency 

between the scheduler and the cores (Section  6.5.1). 

We have extended the cycle accurate simulator of a 

many-core architecture developed in [7], by inserting the 

scheduling process. With this simulator, it is possible to 

analyze the behavior of different benchmarks, and explore 

new architectural modifications. Using the presented 

"Activity per cycle" and "Activity per core" graphs it is now 

easier to understand the different phenomena occurring in 

many-core architectures. 

We have studied the effect of task assignment latency on 

system performance. It was shown that such latency can 

degrade performance, down to one half in the case of fine 

granularity. In order to hide this latency, we investigated 

adding task queues near each core. Such queues, even if 

very short, can hide most of the latency in many cases. 

Adding a queue near each core may also reduce system 

performance as seen in Section  6.3. Several ideas of 

mitigating this issue were proposed, and some were 

implemented and analyzed. Two improvements seem 

promising: sharing queues among several cores and task 

map optimization and tuning.  

Future research may address the following topics. 

Additional benchmarks may be analyzed in order to expose 

new phenomena. A blocking network may be investigated. 

Other scheduler distribution networks may be studied, such 

as tree and mesh. More solutions to the queues imbalance 

may be suggested and simulated. The implications of 

scheduling on power consumption may also be taken into 

account. Profiling for task map optimization and scheduling 

analysis may be examined to enable tuning. 

REFERENCES 

[1] C.M. Wittenbrink, E. Kilgariff, and A. Prabhu, "Fermi GF100 GPU 

Architecture," IEEE Micro, vol. 31, no. 2, pp. 50-59, March-April 

2011. 

[2] [Online]. http://www.tilera.com 

[3] [Online]. http://plurality.com 

[4] X. Wen and U. Vishkin, "FPGA-based prototype of a PRAM-on-
chip processor," in Proceedings of the 5th conference on Computing 

frontiers, 2008. 

[5] L. Seiler et al., "LARRABEE: A Many-Core X86 Architecture for 
Visual Computing," IEEE MICRO, vol. 29, no. 1, pp. 10-21, Jan.-

Feb. 2009. 

[6] C. Silvano et al., "2PARMA: Parallel Paradigms and Run-time 
Management Techniques for Many-Core Architectures," in IEEE 

Computer Society Annual Symposium on VLSI (ISVLSI), 2010 , pp. 
494 - 499. 

[7] E. Friedman, D. Khoretz, and R. Ginosar, "HypercoreX: Non-

Equidistant Memory Network in a Many-Core-Architecture," in 
20th Euromicro Int. Conf. on Parallel, Distributed and Network-

Based Computing (PDP), WIP session, Feb. 2012. 

[8] Z. Guz et al., "Many-Core vs. Many-Thread Machines: Stay Away 
From the Valley," Computer Architecture Letters, vol. 8, no. 1, pp. 

25-28, JANUARY-JUNE 2009. 

[9] W. Lee et al., "Space-Time Scheduling of Instruction-Level 
Parallelism on a Raw Machine," in Proceedings of the 8th 

International Conference on Architectural Support for 

Programming Language and Operating Systems (ASPLOS-8), San 
Jose, Ca, 1998. 

[10] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe, "Convergent 

Scheduling," in Proceedings of the 35th Annual IEEE/ACM 
International Symposium on Microarchitecture, 2002. 

[11] J.-J. Shieh, Y.-C. Lee, and H.-R. Chen, "Fine grain scheduler for 

shared-memory multiprocessor systems," IEE Proceedings - 
Computers and Digital Techniques, vol. 142, no. 2, pp. 98 – 106, 

Mar 1995. 

[12] T.P. Crummey, D.I. Jones, P.J. Fleming, and W.P. Mamane, "A 
Hardware Scheduler for Parallel Processing in Control 

Applications," in CONTROL'94, 1994, pp. 1098-1103. 

[13] H. S. Kim and J. E. Smith, "An Instruction Set and 
Microarchitecture for Instruction Level Distributed Processing," in 

Proceedings of the 29th Annual International Symposium on 

Computer Architecture, 2002, pp. 71-81. 

[14] L. Yu et al., "Study on Fine-grained Synchronization in Many-Core 

Architecture," in 10th ACIS International Conference on Software 

Engineering, Artificial Intelligences, Networking and 
Parallel/Distributed Computing (SNPD '09), 2009, pp. 524-529. 

[15] Y. Etsion et al., "Task Superscalar : An Out-of-Order Task 

Pipeline," in 43rd Annual IEEE/ACM International Symposium on 
Microarchitecture (MICRO), 2010, pp. 89-100. 

[16] P. Trancoso, P. Evripidou, K. Stavrou, and C. Kyriacou, "A Case for 

Chip Multiprocessors Based on the Data-Driven Multithreading 
Model," International Journal of Parallel Programming, vol. 34, 

no. 3, pp. 213-235, June 2006. 

[17] N. Bayer and R. Ginosar, "High Flow-Rate Synchronizer/Scheduler 
Apparatus and Method for Multiprocessors," US Patent 5,202,987, 

April 13, 1993. 

[18] M.B. Taylor et al., "The Raw microprocessor: a computational 
fabric for software circuits and general-purpose programs," IEEE 

MICRO, vol. 22, no. 2, pp. 25-35, Mar/Apr 2002. 

[19] B. Beresini, S. Ricketts, and M.B. Taylor, "Unifying manycore and 
FPGA processing with the RUSH architecture," in NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 2011, pp. 

22-28. 

[20] X. Chen et al., "Multi-FPGA Implementation of a Network-on-Chip 

Based Many-core Architecture with Fast Barrier Synchronization 
Mechanism," in NORCHIP, 2010, pp. 1-4. 

[21] Y.F. Hung, S.Y. Tseng, C.T. King, H.Y. Liu, and S.C. Huang, 

"Parallel Implementation and Performance Prediction of Object 
Detection in Videos on the Tilera Many-core Systems," in 10th 

International Symposium on Pervasive Systems, Algorithms, and 

Networks (ISPAN), 2009, pp. 563-567. 

[22] T. C. Xu, L. Pasi, and H. Tenhunen, "Process Scheduling for Future 

Multicore Processors," in INA-OCMC, 2010. 

[23] D. Waddington, C. Tian, and KC Sivaramakrishnan, "Scalable 
Lightweight Task Management for MIMD Processor," in EuroSys 

workshop, Systems for Future Multicore Architectures (SFMA 

http://www.tilera.com/
http://plurality.com/


 

2011), Salzburg, 2011, pp. 1-6. 

[24] D. Zydek and H. Selvaraj, "Processor Allocation Problem for NoC-

based Chip Multiprocessors," in Sixth International Conference on 
Information Technology: New Generations (ITNG '09), 2009, pp. 

96-101. 

[25] J. H. Kelm et al., "Rigel: an architecture and scalable programming 
interface for a 1000-core accelerator," in Proceedings of the 36th 

annual international symposium on Computer architecture, Austin, 

TX, USA, 2009. 

[26] L. Chen, O. Villa, S. Krishnamoorthy, and G.R. Gao, "Dynamic 

Load Balancing on Single- and Multi-GPU Systems," in IEEE 

International Symposium on Parallel & Distributed Processing 
(IPDPS), 2010, pp. 1-12. 

[27] A.P.D. Binotto, C.E. Pereira, A. Kuijper, A. Stork, and D.W. 

Fellner, "An Effective Dynamic Scheduling Runtime and Tuning 
System for Heterogeneous Multi and Many-Core Desktop 

Platforms," in IEEE 13th International Conference on High 

Performance Computing and Communications (HPCC), Sept. 2011, 
pp. 78-85. 

[28] I. Wald, "Fast Construction of SAH BVHs on the Intel Many 

Integrated Core (MIC) Architecture," IEEE Transactions on 
Visualization and Computer Graphics, vol. 18, no. 1, pp. 47-57, 

January 2012. 

[29] G. C. Caragea, F. Keceli, A. Tzannes, and U. Vishkin, "General-
Purpose vs. GPU: Comparison of Many-Cores on Irregular 

Workloads," in HotPar '10: Proceedings of the 2nd Workshop on 

Hot Topics in Parallelism, 2010. 

[30] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler, "A 

Design Space Evaluation of Grid Processor Architectures.," in 

Proceedings of the 34th Annual International Symposium on 
Microarchitecture, 2001, pp. 40-51. 

[31] F. Song et al., "Evaluation Method of Synchronization for Shared-

Memory On-Chip Many-Core Processor," in IEEE International 
Symposium on Parallel and Distributed Processing with 

Applications, 2009, pp. 571-576. 

[32] S. Kumar, C. J. Hughes, and A. Nguyen, "Carbon: Architectural 
Support for Fine-Grained Parallelism on Chip Multiprocessors," in 

Proceedings of IEEE/ACM International Symposium on Computer 

Architecture (ISCA), San Diego, California, June 2007. 

[33] D. Sanchez, R. M. Yoo, and C. Kozyrakis, "Flexible Architectural 

Support for Fine-Grain Scheduling," in Proceedings of the 15th 

international conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS-XV), March 2010. 

[34] P. Evripidou, "Thread Synchronization Unit (TSU): A building 
block for High Performance Computers," in Proceedings of the 

International Symposium on High Performance Computing, ISHPC, 

1997, pp. 107-118. 

[35] N. Gupta, S.K. Mandal, J. Malave, A. Mandal, and R.N. Mahapatra, 

"A Hardware Scheduler for Real Time Multiprocessor System on 

Chip," in 23rd International Conference on VLSI Design (VLSID 
'10), 2010, pp. 264 - 269. 

[36] M. Zhou, L. H. Shang, J. Zhang, and H. H. Jin, "Adaptive Hardware 

Real-Time Task Scheduler of Multi-Core ATPA Environment," in 
NASA/ESA Conference on Adaptive Hardware and Systems, AHS 

2009, 2009, pp. 382 - 388. 

[37] D.-S. Zhang, F.-Y. Chen, H.-H. Li, S.-Y. Jin, and D.-K. Guo, "An 
Energy-Efficient Scheduling Algorithm for Sporadic Real-Time 

Tasks in Multiprocessor Systems," in IEEE 13th International 

Conference on High Performance Computing and Communications 
(HPCC), Sept. 2011, pp. 187-194. 

[38] N. Bayer, "A Hardware-Synchronized/Scheduled Multiprocessor 

Model," Technion – Israel Institute of Technology, Thesis, English 
abstract online, 

http://webee.technion.ac.il/~ran/papers/NimrodBayerMScThesisAbs

tract1989.pdf January 1989. 

[39] N. Bayer and R. Ginosar, "Tightly Coupled Multiprocessing: The 

Super Processor Architecture," in Q. Jin et al (eds.) "Enabling 

Society with Information Technology". Tokyo: Springer, 2002, pp. 
329-339, http://webee.technion.ac.il/~ran/papers/MP-Bayer-Ginos. 

[40] N. Bayer and P. Aviely, "Shared Memory System for a Tightly-

Coupled Multiprocessor," US patent 8,099,561 B2, January 17, 
2012. 

[41] O. Green and Y. Birk, "Scheduling Directives for Shared-Memory 

Many-Core Processor Systems," Electrical Engineering Dept., 
Technion, CCIT Report #803 January 2012. 

 


