
1

Performance of a Hardware Scheduler

for Many-Core Architecture

Itai Avron and Ran Ginosar

Electrical Engineering Dept., Technion—Israel Institute of Technology

Haifa 32000, Israel

Abstract – A hardware scheduler for many-core architectures

enables fast scheduling and allocation of fine granularity tasks

to all cores. We present performance evaluation of a hardware

scheduler for HyperCore, a many-core architecture. The

evaluation is based on an architectural simulator, using

multiple benchmarks representing a wide variety of inherent

parallelism. Several architectural improvements are proposed,

and various configurations of the scheduler are simulated. The

results are analyzed, and are used to highlight the potential

and the possible pitfalls of the architecture. It is shown that a

scheduler with a capacity to schedule and terminate 10

instances per cycle, along with a task queue of as little as two

slots near each core, is sufficient to utilize 256 cores. Other

scheduling configurations are also analyzed.

Keywords – hardware scheduler; many-core; performance;

task queues

1 INTRODUCTION

Today, chips are produced with a small number of cores

(multi-core). This enables handling them similarly to a uni-

processor; memory access and scheduling of processes to

cores are similar to what is done in a single core. But to

keep up with the need for increased performance, the

number of cores will have to grow. Several many-core

architectures already exist. Such architectures include

NVIDIA [1] and ATI GPUs and Tilera tiles [2], as well as

proposals such as Plurality HyperCore [3], XMT [4], Intel

Larrabee [5] and 2PARMA [6].

Unlike current multi-core solutions, many-core

architecture requires new tools and techniques in order to be

utilized efficiently. While many research works handle the

subject of network, communication, memory [7] and cache

[8] performance problems, the scheduling problem is

somewhat less investigated. Unlike multi-core systems,

scheduling in a many-core system requires great efficiency

in order to utilize hundreds or even thousands of cores. This

need prohibits the use of a software scheduler, since it

imposes a large overhead on the scheduling process. While

solutions that incorporate static scheduling during compile

time exist [9] [10] [11], they cannot dynamically schedule

tasks according to run-time workload. Hardware schedulers,

on the other hand, enable such advantages and hold more

promise for efficient many-cores [4] [12] [13] [14] [15]

[16].

In this research, we present performance analysis of a

hardware scheduler. We study the HyperCore architecture,

and find the rules useful for developing a hardware

scheduler for many-core architecture [17]. By analyzing the

phenomena that occur in multiple benchmarks, we are able

to highlight the pitfalls that a many-core designer might

stumble upon. Several architectural improvements are

proposed, including a queuing hierarchy. Scheduler

parameters such as the scheduling latency, the scheduler

capacity and task queue depth are simulated, and insights

about their effect on overall system performance are

presented.

The rest of this paper is organized as follows: Section 2

discusses related work. In Section 3 we present the

HyperCore architecture. Proposed solutions for scheduler

limitations are given in Section 4. In Section 5 we describe

our simulation environment and benchmarks, as well as

explain our format of presetting simulation data. Analysis of

simulation results is presented in Section 6, and finally we

conclude and describe future work in Section 7.

2 RELATED WORK

Several many-core architectures have been investigated.

Tilera [2] offers a tiled architecture following RAW [18].

Multiple identical, programmable tiles having local caches

are connected by multiple mesh NoCs. Extensions are

proposed in [19] [20], and a use case is presented in [21]. It

employs static compile time scheduling [9] that orchestrates

parallelism within a basic block across tiles and also handles

control flow across basic blocks. Processes are allocated to

rectangular-shaped tile groups. Compiler and allocation

enhancements can be found in [10], [22]. Instead of static

scheduling, this paper discusses a hardware scheduler that

enables dynamic load-balancing. A dynamic scheduler for

Tilera is presented in [23], where system threads execute

tasks from a task queue. Still, scheduling is software based,

incurring longer overhead than a hardware scheduler. A

more general treatment of NoC-based scheduling is given in

[24]. In Rigel [25], another many core architecture with

task-queue software scheduling, the cores are organized

hierarchically in clusters and a bulk-synchronous

programming model is employed.

NVIDIA Fermi [1] GPU comprises multiple SIMD

processors. A hardware scheduler switches threads in order

to hide memory latency. GPUs are efficient when

processing many threads with same control flows. A task-

based dynamic load-balancing solution is proposed in [26],

using a persistent kernel which executes tasks from a task

queue. A method for load-balancing across the CPU as well

is given in [27]. Intel Larrabee [5], another GPU, combines

many cores instead of many threads. The similar

architecture Intel MIC is described in [28], demonstrating a

distributed task-stealing software scheduler. In contrast, this

paper investigates a hardware scheduler.

XMT [4] [29] uses a programming model based on

PRAM with arbitrary CRCW (concurrent read concurrent

write) SPMD and incorporates hardware prefix-sum logic to

schedule same-code threads. It shows good performance for

fine-grained tasks and irregular applications. Unlike our

architecture, XMT threads explicitly call the hardware

scheduler (using a PS instruction). Further, XMT can

execute the multiple instances of only one task at a time.

Grid Processor Architectures (GPA) [30] consists of a two-

dimentional array of ALUs, each with limited control,

connected by a thin operand network. Compilation and

scheduling of instructions to ALUs is static, whereas

execution is dynamic in dataflow order.

Hardware schedulers for a small number of cores are

described in [12] and [13]. In the latter, hardware steering

logic allocates strands (chains of dependent instructions) to

cores based on inter-strand dependencies. Hardware

scheduling for Godson-T is described in [31] [14],

comparing also fine grain to barrier synchronization and

managing instance dependencies in addition to coarser task

dependencies. Carbon [32] and ADM [33] use hardware

task queues to support scheduling. In the Data-Driven

Multithreading (DDM) [34], [16] design, a hardware

mechanism provides data-driven thread synchronization for

multi-threaded architectures that uses control flow

processors. Scheduling follows a task map created by the

programmer, using a producer-consumer programming

model. Task Superscalar [15] generalizes the concept of

instruction-level out-of-order execution to tasks, detecting

task-level parallelism in run time, but software scheduling

incurs high overhead. Real-time scheduling manages not

only starting tasks but also constraints on finish time of

tasks. Hardware real-time schedulers are described in [35],

[36]. Energy-efficient real-time scheduling is presented in

[37]. Finally, the Tatung fine grain scheduler (TFGS) [11]

operates at the machine instruction level, using a

data/control dependency graph, a branch nest tree and a

priority list to create a static scheduling prior to execution.

At runtime, test bits synchronize the processors and notify

of branch decisions.

3 HYPERCORE ARCHITECTURE

This section presents the HyperCore architecture, the

programming model, and the hardware scheduler.

3.1 Architecture

The HyperCore architecture (Figure 1) is a shared-

memory many-core system [3] [38] [39] [40]. It has a

hardware synchronization and scheduling unit, 16-256 RISC

cores, and a shared on chip memory that is accessed through

a high-performance interconnection network.

The cores themselves are simple general-purpose 32-bit

RISC processors. The cores do not have any data cache, and

thus no coherency logic is needed. A small instruction cache

is used to enable efficient access to code. The cores use

blocking data load and store with no out-of-order execution,

and run each task instance to completion (no task switching

is allowed).

Figure 1: HyperCore architecture

The shared memory is organized in a large number of

banks, to enable many ports that can be accessed in parallel

by the many cores. To reduce collisions, addresses are

interleaved over the banks. The cores are connected to the

memory banks by a many-to-many interconnection network

that can serve simultaneous accesses from all cores. The

network detects access conflicts contending on the same

memory bank, proceeds serving one of the requests and

notifies the other cores to retry their access. The cores

immediately retry a failed access. Two or more concurrent

read requests from the same address are served by a single

read operation and a multicast of the same value to all

requesting cores.

All memory accesses from each core to each memory

bank take a constant time of two cycles if there are no

conflicts. Since the HyperCore is designed as a single clock

system, the clock cycle time is limited by the longest wire

delay between any core and any memory bank.

The possible states of each core are shown in Figure 2. A

core starts in Idle state. Once allocated a task for execution,

it becomes Busy. When it encounters a memory access

operation, it is either Waiting (if the memory access will

succeed) or Colliding (if it is about to collide). Once

completing a task, it moves back to Idle.

CollidingWaitingBusyIdle

Figure 2 : Core state transition graph

3.2 Programming Model

The programming model of the HyperCore is based on

multiple sequential tasks and their inter-dependencies. The

programmer defines the tasks, as well as the list of

dependencies, formulated as a (directed graph) task map.

The tasks are executed by the cores, while the task map is

executed by the scheduler. Some tasks may be duplicable,

accompanied by a quota that determines the number of

instances that should be executed; all instances are mutually

Scheduler

Cores

Memory
banks

Cores-to-Memory Network

Scheduler-to-Cores Network

independent and may be executed in parallel or in any

arbitrary order. The instances are distinguishable from each

other merely by their instance number. Ideally the instances

do not share data, and their execution time is short (fine

granularity). The scheduler distributes the tasks that are

eligible for execution among the available cores at that

moment.

Normal Parallel

A
1

23

B
100

15

C
500

35

D
600

20

E
130

18

F
1

27

cntr=4

A
1

23

B
2000

25

C
2500

35

D
2600

26

E
2300

18

F
1

19

cntr=4

A
1

10

B
1

10

G
300

2418

E
1

12810

L
1

460

N
1

207

D
300

181

K
100

1659

C
1

5715

I
100

1952

J
200

1490

F
300

705

H
300

2927

M
1

2548

A
1

236

B
1

40

C
1

214

E
100

126

K
1

87

F
1

58

J
1

47

D
1

172

G
7720

197

H
100

78

cntr=5

JPEG Linear Solver

Task Name

Number of instances

Length in time units

(a) (b) (d)(c)
Figure 3 : Demo benchmarks task maps: (a) Normal, (b)

Parallel. Benchmarks task maps : (c) JPEG, (d) Linear Solver

Figure 3 shows a few task maps. Squares represent tasks

(named A, B, C, …) and show the number of required

duplications and the number of cycles it takes for one

instance to complete. Arrows represent task dependencies.

A task is eligible to run only when all its predecessors have

completed. The rhombus represents a condition and is

executed only by the scheduler; there is no real code

associated with condition tasks. In the "Normal" benchmark

(a) for example, the condition controls task looping: The

scheduler goes back to task A (for another invocation) for 4

times, and then proceeds to task F.

3.3 Scheduler

The hardware scheduler assigns tasks to cores for

execution. A core which completes its task sends a

termination message to the scheduler. The scheduler then

allocates a new task to the core using the task map. The

Scheduler communicates with the cores over the Scheduler

Network (SN), as in Figure 1.

Each task progresses through four states, as in Figure 4.

It starts as pending, when it waits for its predecessors to

finish. It then becomes ready and the scheduler may

schedule its instances for execution and allocate them to

cores. Once all its instances have been scheduled, it is

completely allocated. And once all its instances have

terminated it moves into the finished state.

Finished
Completely
Allocated

ReadyPending

Figure 4 : Task states

The number of simultaneous tasks which the scheduler is

able to terminate or allocate during each cycle is limited.

Any additional termination message beyond the scheduler

capacity awaits the following cycles in order to be

processed. The same applies to any additional task

allocations beyond the scheduler capacity. A core remains

idle from the time it issues a termination message until the

next task allocation arrives. That idle time comprises not

only the delay at the scheduler (wait and processing times)

but also any transmission latency of the termination and

allocation messages over the scheduler-to-cores network.

4 SCHEDULER MODIFICATIONS

As described above (Section 3.3), the scheduler

(including the SN) may be limited in terms of capacities and

latencies. In this research we investigate, by simulations,

how these limitations may affect system performance, and

explore possible solutions as follows:

1. Enhancing scheduler capacity: The scheduler can

process only a limited number of termination and

allocation messages each cycle. For fine granularity

tasks, many tasks may need to be invoked or terminated

simultaneously. Several ways can be used in order to

achieve this increase, from enhancing the Scheduler to

enhancing the SN. In this study we do not distinguish

among these methods, and use the overall scheduler

capacity as a single parameter. To simplify things further,

we also assume a similar capacity for the termination and

allocation processes. This assumption seems reasonable

for a balanced Scheduler.

2. Reducing scheduling latency: Latency is incurred due to

two factors: network delay between the scheduler and the

cores and processing time in the scheduler. We study the

overall latency between core termination time and next

allocation time. Latency may be reduced by constructing

a more powerful Scheduler and constraining the physical

distance between the Scheduler and the cores.

3. Adding task queues to each core: A core is idle from the

time it completes a task until the next task allocation

arrives at the core. In order to cope with this problem, we

suggest adding a task queue near each core. This queue

will hold additional available tasks for the core. When the

core finishes its current task, it already has another task

available to start working on. Several queue depths are

tested in this research in order to understand their effect

on system behavior.

4. Sharing queues: After the addition of task queues, cases

may occur when load imbalance degrades system

performance. In order to implement a simple work-

stealing algorithm, we propose sharing a task queue

among several cores, thus creating core clusters. We

show that this simple change in architecture restores

balance to the system in most cases.

We study a modified HyperCore architecture comprising

256 RISC cores and 256 memory banks, and introduce a

queue with variable depth near each core. The scheduler is

able to allocate and receive termination messages of a

configurable number of tasks instances. The allocation and

termination algorithms are shown in Figure 5.

5 SIMULATION ENVIRONMENT

The study is based on an architectural simulator

implemented in Matlab, developed in [7]. The simulator is

cycle accurate and allows investigating parallel execution

under different architectural variations. In this work, we

have added the scheduler part to the above simulator, and

implemented the modifications described in Section 4.

Figure 5 : Allocation (top) and Termination (bottom)

algorithms

Four benchmark programs (explained in Section 5.1)

were simulated on 24 different configurations of the

architecture, as follows:

 Four values of task queue depth: 0, 1, 2, 10

 Three values of scheduler capacity: 5, 10, infinite

 Two levels of latency between the scheduler and the

cores: 0 and 20 cycles (in the following, only results

related to 20 cycles latency are presented as they are

more meaningful).

All configurations employed 256 cores and 256 memory

banks. Preliminary simulations revealed that other values of

task queue depth were insignificant: performance was quite

similar for both 2 and 5 queue depths. Similarly, increasing

that value beyond 10 did not affect the results much. Note

that scheduling latency occurs both from the scheduler to

the cores (for allocation messages) and from the cores to the

scheduler (for termination messages).

5.1 Benchmarks

A benchmark program consists of tasks, some of which

are duplicable and some are conditional. Running a program

requires the program’s task map and the code of each task.

A task map includes the program task names, the task

dependencies and the number of duplicated instances for

each task.

Two demo programs were tested. These programs have

the same task map with variations that are aimed to

investigate a range of parallelism. The demo programs are:

- Normal: the program with a moderate number of

duplications.

- Parallel: same as Normal, but with many more

duplications for each task.

Figure 3 shows the task map of the demo programs and

two additional benchmarks: JPEG image compression

(image 160x160) and a Linear Solver benchmark. Task

maps are explained above in Section 3.2.

5.2 Simulation details

For each of the above benchmarks, statistics have been

gathered in order to explore the phenomena that can be

encountered in real life programs. Computing only the total

number of cycles each program took may mask the reasons

for those results, preventing us from analyzing them

properly. More detailed statistics were needed, to show what

is done by each part of the architecture on each cycle of the

program. The first statistics that were gathered show for

each cycle how many cores are busy, idle, waiting or

colliding. Through it, one can observe certain points within

the program that are hard for the scheduler to handle. For

example, points where the cores are idle though tasks that

are ready to run are available. The second set of statistics

tell the tale from the cores’ point of view; for each core, the

number of cycles the core was busy, idle, waiting or

colliding is shown.

Results of the above statistics and analysis show that

different programs behave differently. A detailed analysis of

each benchmark is given in Section 6. Two kinds of graphs

are presented, each for the appropriate statistics. The first

one is "Activity per cycle" (e.g. Figure 9). In those graphs

the X-axis shows cycles of program execution and the Y-

axis shows cumulative core activity in each cycle. The

second graph is "Activity per core" (e.g. Figure 6). In those

graphs the X-axis is the core index, and the Y-axis shows

the cumulative activity for each core.

For each of those graph, we show 12 charts related to the

12 configurations (task queue depth of 0, 1, 2 or 10 and

scheduler capacity of 5, 10 or infinity). Queue depth

increases towards the right-hand side of each graph and

scheduler capacity increases when going down over the

charts.

6 ANALYSIS OF SIMULATION RESULTS

We first describe simulation results for each of the four

benchmarks, and then compare the results to each other.

6.1 “Normal” Benchmark

Figure 6 shows an "Activity per core" graph for the

"Normal" benchmark in the 20 cycles latency scenario.

Latency is incurred for both the allocation (Scheduler to

cores) and termination (cores to Scheduler) messages.

1. Find all Ready tasks.
2. Choose one of the Ready tasks.
3. While there is still enough scheduler capacity

a. Find the core queue with fewest instances (if
several such queues exist, choose the lowest
index queue)

b. Allocate an instance to that queue
c. Increase counter of instances in that queue
d. Increase counter of allocated task instances
e. If a task is Completely Allocated, continue to next

task

1. Choose lowest index core which has sent a
termination message

2. While there is still enough scheduler capacity
a. Process termination message
b. Decrease counter of instances in queue
c. Increase counter of finished task instances
d. If the task is Finished, find new tasks that are

eligible to run and change them to Ready state
e. Continue to next core

Observe that there is a drop in the total run time (when the

capacity is high enough) as we move from no task queue to

only one slot per queue. The reason is that the queue acts as

a buffer to hide some of the latency between the scheduler

and the cores.

By examining the last line of charts (infinite capacity), it

is possible to see that the overall run time increases from

1410 to 1470 cycles as the queues depth is increased. This

result is unexpected, and may be explained as follows.

Consider the scheduling balance among different cores, and

observe that when the queue depth increases, the working

load spreads unevenly among the cores. That is, lower index

cores perform more work than higher index ones. Studying

the statistics of that imbalance clearly shows the reason for

the phenomenon. Each cycle, the imbalance in the

scheduling is measured by counting the number of idle cores

versus the number of ready tasks waiting to be executed by

a busy core (namely, ready to run instances waiting in the

queue of an already busy core). The results can be seen in

Figure 7. As the queue gets deeper, more imbalance occurs.

In the case of a no queue, no imbalance is possible (the

scheduler assigns a new job to a core only after the last job

has finished). In the case of low scheduler capacity, the

scheduler does not work fast enough to fill more than one

task per core (it schedules idle cores first), as already seen

by the fact that it does not utilize the high index cores well.

When unbalanced load does occur, it means that some cores

are idle while there is a job to be done, and so time is wasted

and the program total run time gets longer.

When we compare the results for the 20 cycles latency

(Figure 6) against the no latency simulation (not shown), we

find that the total run-time has increased (e.g. from about

950 cycles in the capacity=inf, queue depth=10 in the

latency=0 case, to roughly 1470 cycles in the latency=20

case, Figure 6). Taking a second look into the task map

helps answer this puzzle. The latency that is now inherent in

the system means that every time the scheduler sends a task

to the cores, 20 cycles pass before execution can start.

Similarly, when a core completes the task and sends a

termination message to the scheduler, again 20 cycles pass

before the scheduler can send the next task. Therefore, in

each synchronization point in the task map (where the

scheduler waits for some tasks to finish in order to start

scheduling new tasks), a 40 cycles latency is encountered. In

this benchmark, for example (Figure 3), the scheduler needs

to wait for both task C and task D to finish before task E can

be assigned to the cores. This synchronization point's

latency cannot be compensated for by the task queues,

because only when the queues are all empty can the

scheduler assign the new task. Counting all the

synchronization points in the program and the fact that the

task map is repeated four times, the difference of 500 cycles

in the total run time can be accounted for.

Figure 6 : Activity per core in Normal benchmark,

Latency = 20 cycles

Figure 7 : Unbalanced scheduling per cycle in Normal

benchmark, Latency = 20 cycles

6.2 “Parallel” Benchmark

The parallel benchmark (Figure 3(b)) is different from

the normal benchmark (Figure 3(a)) in the number of

instances each task has. Figure 8 shows the Activity per core

for 20 cycles latency. In this case, the low capacity

scheduler is still unable to utilize all the cores, thus not

taking advantage of the vast parallelism. Increasing the

capacity just by a little (to 10 instances per cycle, second

row of Figure 8) enables the scheduler to reach its full

potential as seen by the low idle time of the system. As for

infinite capacity (last row of the figure), the number of tasks

is so great that no unbalanced work distribution takes place

(there is always work for everyone).

Here we witness again the effect of the 20 cycles latency

on the program run time. When there is no task queue, the

latency between the scheduler and the cores is just the same

as extending the tasks run time. For instance, consider the

capacity=inf, queue depth=0 case (bottom left chart in the

figure) and assume perfect balancing. We have

(2000+2500+2600+2300)×4 tasks (as per the task map),

each suffering a 40 cycles latency. When distributing this

latency over the 256 cores, we get an additional idle time of

() []
 []

 []
 []. On the other hand, adding as

little as two slots to each core's queue (from queue depth=0

to 2, third column in the figure) enables hiding most of the

latency and obtaining results similar to those with no latency

at all. The only difference is the synchronization points

where the latency cannot be compensated for.

Figure 8 : Activity per core in Parallel benchmark,

Latency = 20 cycles

Observing the first line of charts in Figure 8, we notice

that work distribution is again unbalanced. The latency has

effectively increased the tasks run time. In turn, this should

have made the work more balanced, as now the scheduler

has enough time to assign work to high index cores.

However, this does not take into account the queues role.

The lower index cores, which receive the first tasks, also get

a second task into their queues before they finish their jobs.

This second task does not suffer from any latency, since the

cores had work to do until they got them. For the higher

index cores, unfortunately, the second task comes only after

they already finished their work. So, they suffer the latency

penalty for both the report back to the scheduler and for the

scheduling of the new task. This makes them work less than

the other cores, and hence the results. We may conclude that

queues help hide latency only if scheduler capacity is

sufficiently high.

6.3 JPEG Benchmark

The JPEG benchmark leads to another strange

phenomenon (Figure 9): employing a task queue for the

cores significantly degrades system performance. The

scheduler capacity itself has no effect, due to task long run

times, which enable the scheduler to reach the high index

cores before any low index core finishes its work. Consider

scheduling imbalance; the charts in Figure 10 show the

number of cores, each cycle, which remain idle although

work ready for execution is waiting in some other queues.

Notice that in addition to the peaks, there are also tails that

indicate a small number of ready tasks that are stuck in

some queues when there are also idle cores elsewhere.

Note that at one point during the program execution all

the cores are waiting for one core to complete (e.g. the one

busy core between 10,000 and 15,000 cycles in the three

columns on the right in Figure 10). This period matches

exactly the time in which almost all cores are idle (yellow

sections in Figure 9). When considering the JPEG task map

(Figure 3), we notice that task E is much longer than all

other tasks. When there is no queue, this task is executed

along the other tasks, and when it finishes only task F is left

to run (the second block of work visible in the left column

in Figure 9). With a non-zero queue, however, another

instance is assigned to the core that works on task E. This

instance comes from task G in this case. Now, when task E

is finally over, task F is ready to run. But task G has not

completed yet, and so task H is not assigned to any core.

Only when the last instance of task G (which has waited for

task E to finish) is over, can the scheduler start assigning

task H (as can be seen in the third block of work being done

on all the queued configurations). In conclusion, task queues

may degrade system performance in some cases, and thus

need to be treated with caution. Those cases occur when

there are (very) coarse grained tasks in the task map.

Figure 9 : Activity per cycle in JPEG benchmark,

Latency = 20 cycles

Figure 10 : Unbalanced scheduling per cycle in JPEG

benchmark, Latency = 20

We can see in this example that even though only one

instance suffers from unbalanced scheduling between the

cores, the results can be quite devastating to overall system

performance. In order to cope with this scenario, several

solutions are suggested:

1. Queue sharing among multiple cores, requiring more

complex hardware

2. Using fine granularity tasks

3. Scheduling awareness of long tasks [41], possibly

requiring a more complex scheduler

4. Task migration among queues, possibly requiring more

complex hardware and enhanced communication

bandwidth, and incurring higher power and latency

5. Task map optimization [41]

6. Pipeline multiple instances of an algorithm (e.g. image

compression applied to a sequence of image segments) so

that parallel sections of one instance overlap the serial

bottlenecks of other instances.

The first two solutions have been simulated and are

presented in the following sections. The other four solutions

were not simulated, and are offered for future research.

6.3.1 Shared Queues

In order to handle unbalanced scheduling (where ready

tasks wait for a core to finish its work although there may be

other cores that are idle), queue sharing among several cores

can be implemented. In that architecture, the scheduler

assigns work to a cluster of cores, such that a task pool is

formed, and each core in the cluster can pick up a new job

from the pool once it has finished its old job.

In our case, each cluster contains two adjacent cores

(having two consecutive index values). That is, cores 2i and

2i+1 share a common queue (i = 0, 1, 2, …, 127). The

scheduler assigns tasks to empty queues first (namely, one

task to the queue of cores 0 and 1, the next task to the queue

of cores 2 and 3, etc.). In each cluster, the core which is idle

can take the next task from the queue. The queues holding

termination messages are not shared. Notice that a task

queue depth of 1 means one job per core, which are two jobs

per queue.

Figure 11 : Activity per cycle in JPEG benchmark with shared

queues, Latency = 20 cycles

With shared queue (Figure 11), the waiting time for task

E to finish is exploited working on other tasks, since task G

does not get stuck behind it. This solves the problem in our

case. Caution may be needed when employing this solution

in the architecture, since scenarios still exist when a cluster

is assigned several long tasks, creating scheduling

bottlenecks as described above.

6.3.2 Fine Granularity Tasks

Observe that the only reason for the above phenomenon

is the existence of long tasks. A trivial solution is to

eliminate long tasks by breaking them into smaller ones.

One way to achieve that is to restrict the programmer to

writing only small tasks. Alternatively, we investigate

decomposing long tasks into a series of short ones. In the

JPEG example, long task E is replaced by 3 shorter tasks

E1, E2, E3, as in Figure 12. The results are presented in

Figure 13, showing improved performance (shorter total run

time compared to Figure 9). Additional improvements may

be achievable by decomposing task E further and by also

decomposing task C.

E1
1

4270

E2
1

4270

E3
1

4270

E1
1

12810

Figure 12 : Task E of the JPEG Benchmark decomposed into

three equal parts.

Figure 13 : Activity per cycle in the fine granularity JPEG

benchmark, Latency = 20 cycles

6.4 Linear Solver Benchmark

This benchmark is highly parallel as seen by the great

amount of instances of task G in the task map (Figure 3). In

the simulation too (Figure 14) it is clear that most time all

cores are busy, without much access to memory. One slot of

task queue is sufficient to hide the latency and recover the

performance of the system without latency. The scheduling

capacity can remain low in this benchmark since the tasks

are long enough to enable the scheduler to assign work to all

cores.

6.5 Benchmarks Analysis

In this section, several comparisons of the different

benchmarks are presented in order to illuminate the

compromises a designer must make in a many-core

architecture to support different programs and their unique

attributes.

Figure 14 : Activity per core in Linear solver benchmark,

Latency = 20 cycles

6.5.1 Total Run Time

Figure 15 shows the total run time of each benchmark

for each configuration of queue depth and scheduler

capacity. The red surface represents the no latency case, and

the blue surface is for the 20 cycles latency scenario

(latency from the Scheduler to the cores and vice versa).

Notice variations along the Queue Depth axis: aside from

the JPEG benchmark, where increasing the queues causes an

increase in the total run time (explained by scheduling

imbalance in Section 6.3), adding of as little as a two slots

queue to each core can compensate for most of the latency

between the scheduler and the cores. Where there is no

latency, the queues obviously do not improve performance;

fortunately, they do not degrade performance. Considering

the Scheduler Capacity axis, observe that increasing

scheduler capacity mostly helps performance. A capacity of

10 instances per cycle is sufficient to reach maximum

utilization of the cores.

In summary, an architecture where each core has a 2 slot

queue, and the scheduler has the capacity of scheduling 10

instances each cycle, suffices to utilize 256 cores in most

cases even in the presence of long latency between the

scheduler and the cores.

6.5.2 Load Balancing

Another important aspect of scheduling is balancing

work among the different cores. Such balance can for

example distribute the power and heat throughout the entire

chip, thus enabling higher clock frequency and better overall

performance.

Figure 16 presents standard deviation of the total busy

times of all cores. As expected, removing the queues (0

Queue in the graphs) results in a lower STD, meaning the

work is more balanced among the cores. Also, increasing

scheduler capacity enables the scheduler to reach the high

index cores, and distribute the work more evenly among the

cores.

Figure 15 : Total run time vs. queue depth and scheduler

capacity

Figure 16 : STD of cores busy time

Figure 17 : Effective scheduling latency, Latency = 20 cycles

6.5.3 Effective Allocation Latency

In half the simulations, a 20 cycles latency was inserted

between the scheduling of a task and the core receiving that

task. Queues were added in order to compensate for this

latency. Figure 17 shows how well the queues worked. For

each instance that was scheduled by the scheduler, the time

that was wasted until it arrived at the queue was counted.

That is, if the core to which it was destined was idle, the

entire 20 cycles latency was counted. If, on the other hand,

the core was busy during the entire 20 cycles, then the

latency was hidden and not counted. The effective latencies

that each instance suffered were averaged over all the

instances in the program, and are presented in the figure.

When there is no queue, each instance suffers the entire 20

cycles latency. Adding a one slot queue, however, is

sufficient to hide much of the latency, even when

scheduling capacity is low.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed how the performance of a

many-core architecture depends on the hardware scheduler.

The scheduler was simulated with various configurations.

We conclude that an architecture where each core has a 2

slot queue, and the scheduler is capable of scheduling 10

instances each cycle is sufficient to efficiently utilize 256

cores in most cases even in the presence of long latency

between the scheduler and the cores (Section 6.5.1).

We have extended the cycle accurate simulator of a

many-core architecture developed in [7], by inserting the

scheduling process. With this simulator, it is possible to

analyze the behavior of different benchmarks, and explore

new architectural modifications. Using the presented

"Activity per cycle" and "Activity per core" graphs it is now

easier to understand the different phenomena occurring in

many-core architectures.

We have studied the effect of task assignment latency on

system performance. It was shown that such latency can

degrade performance, down to one half in the case of fine

granularity. In order to hide this latency, we investigated

adding task queues near each core. Such queues, even if

very short, can hide most of the latency in many cases.

Adding a queue near each core may also reduce system

performance as seen in Section 6.3. Several ideas of

mitigating this issue were proposed, and some were

implemented and analyzed. Two improvements seem

promising: sharing queues among several cores and task

map optimization and tuning.

Future research may address the following topics.

Additional benchmarks may be analyzed in order to expose

new phenomena. A blocking network may be investigated.

Other scheduler distribution networks may be studied, such

as tree and mesh. More solutions to the queues imbalance

may be suggested and simulated. The implications of

scheduling on power consumption may also be taken into

account. Profiling for task map optimization and scheduling

analysis may be examined to enable tuning.

REFERENCES

[1] C.M. Wittenbrink, E. Kilgariff, and A. Prabhu, "Fermi GF100 GPU

Architecture," IEEE Micro, vol. 31, no. 2, pp. 50-59, March-April

2011.

[2] [Online]. http://www.tilera.com

[3] [Online]. http://plurality.com

[4] X. Wen and U. Vishkin, "FPGA-based prototype of a PRAM-on-
chip processor," in Proceedings of the 5th conference on Computing

frontiers, 2008.

[5] L. Seiler et al., "LARRABEE: A Many-Core X86 Architecture for
Visual Computing," IEEE MICRO, vol. 29, no. 1, pp. 10-21, Jan.-

Feb. 2009.

[6] C. Silvano et al., "2PARMA: Parallel Paradigms and Run-time
Management Techniques for Many-Core Architectures," in IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), 2010 , pp.
494 - 499.

[7] E. Friedman, D. Khoretz, and R. Ginosar, "HypercoreX: Non-

Equidistant Memory Network in a Many-Core-Architecture," in
20th Euromicro Int. Conf. on Parallel, Distributed and Network-

Based Computing (PDP), WIP session, Feb. 2012.

[8] Z. Guz et al., "Many-Core vs. Many-Thread Machines: Stay Away
From the Valley," Computer Architecture Letters, vol. 8, no. 1, pp.

25-28, JANUARY-JUNE 2009.

[9] W. Lee et al., "Space-Time Scheduling of Instruction-Level
Parallelism on a Raw Machine," in Proceedings of the 8th

International Conference on Architectural Support for

Programming Language and Operating Systems (ASPLOS-8), San
Jose, Ca, 1998.

[10] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe, "Convergent

Scheduling," in Proceedings of the 35th Annual IEEE/ACM
International Symposium on Microarchitecture, 2002.

[11] J.-J. Shieh, Y.-C. Lee, and H.-R. Chen, "Fine grain scheduler for

shared-memory multiprocessor systems," IEE Proceedings -
Computers and Digital Techniques, vol. 142, no. 2, pp. 98 – 106,

Mar 1995.

[12] T.P. Crummey, D.I. Jones, P.J. Fleming, and W.P. Mamane, "A
Hardware Scheduler for Parallel Processing in Control

Applications," in CONTROL'94, 1994, pp. 1098-1103.

[13] H. S. Kim and J. E. Smith, "An Instruction Set and
Microarchitecture for Instruction Level Distributed Processing," in

Proceedings of the 29th Annual International Symposium on

Computer Architecture, 2002, pp. 71-81.

[14] L. Yu et al., "Study on Fine-grained Synchronization in Many-Core

Architecture," in 10th ACIS International Conference on Software

Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing (SNPD '09), 2009, pp. 524-529.

[15] Y. Etsion et al., "Task Superscalar : An Out-of-Order Task

Pipeline," in 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2010, pp. 89-100.

[16] P. Trancoso, P. Evripidou, K. Stavrou, and C. Kyriacou, "A Case for

Chip Multiprocessors Based on the Data-Driven Multithreading
Model," International Journal of Parallel Programming, vol. 34,

no. 3, pp. 213-235, June 2006.

[17] N. Bayer and R. Ginosar, "High Flow-Rate Synchronizer/Scheduler
Apparatus and Method for Multiprocessors," US Patent 5,202,987,

April 13, 1993.

[18] M.B. Taylor et al., "The Raw microprocessor: a computational
fabric for software circuits and general-purpose programs," IEEE

MICRO, vol. 22, no. 2, pp. 25-35, Mar/Apr 2002.

[19] B. Beresini, S. Ricketts, and M.B. Taylor, "Unifying manycore and
FPGA processing with the RUSH architecture," in NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2011, pp.

22-28.

[20] X. Chen et al., "Multi-FPGA Implementation of a Network-on-Chip

Based Many-core Architecture with Fast Barrier Synchronization
Mechanism," in NORCHIP, 2010, pp. 1-4.

[21] Y.F. Hung, S.Y. Tseng, C.T. King, H.Y. Liu, and S.C. Huang,

"Parallel Implementation and Performance Prediction of Object
Detection in Videos on the Tilera Many-core Systems," in 10th

International Symposium on Pervasive Systems, Algorithms, and

Networks (ISPAN), 2009, pp. 563-567.

[22] T. C. Xu, L. Pasi, and H. Tenhunen, "Process Scheduling for Future

Multicore Processors," in INA-OCMC, 2010.

[23] D. Waddington, C. Tian, and KC Sivaramakrishnan, "Scalable
Lightweight Task Management for MIMD Processor," in EuroSys

workshop, Systems for Future Multicore Architectures (SFMA

http://www.tilera.com/
http://plurality.com/

2011), Salzburg, 2011, pp. 1-6.

[24] D. Zydek and H. Selvaraj, "Processor Allocation Problem for NoC-

based Chip Multiprocessors," in Sixth International Conference on
Information Technology: New Generations (ITNG '09), 2009, pp.

96-101.

[25] J. H. Kelm et al., "Rigel: an architecture and scalable programming
interface for a 1000-core accelerator," in Proceedings of the 36th

annual international symposium on Computer architecture, Austin,

TX, USA, 2009.

[26] L. Chen, O. Villa, S. Krishnamoorthy, and G.R. Gao, "Dynamic

Load Balancing on Single- and Multi-GPU Systems," in IEEE

International Symposium on Parallel & Distributed Processing
(IPDPS), 2010, pp. 1-12.

[27] A.P.D. Binotto, C.E. Pereira, A. Kuijper, A. Stork, and D.W.

Fellner, "An Effective Dynamic Scheduling Runtime and Tuning
System for Heterogeneous Multi and Many-Core Desktop

Platforms," in IEEE 13th International Conference on High

Performance Computing and Communications (HPCC), Sept. 2011,
pp. 78-85.

[28] I. Wald, "Fast Construction of SAH BVHs on the Intel Many

Integrated Core (MIC) Architecture," IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 1, pp. 47-57,

January 2012.

[29] G. C. Caragea, F. Keceli, A. Tzannes, and U. Vishkin, "General-
Purpose vs. GPU: Comparison of Many-Cores on Irregular

Workloads," in HotPar '10: Proceedings of the 2nd Workshop on

Hot Topics in Parallelism, 2010.

[30] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler, "A

Design Space Evaluation of Grid Processor Architectures.," in

Proceedings of the 34th Annual International Symposium on
Microarchitecture, 2001, pp. 40-51.

[31] F. Song et al., "Evaluation Method of Synchronization for Shared-

Memory On-Chip Many-Core Processor," in IEEE International
Symposium on Parallel and Distributed Processing with

Applications, 2009, pp. 571-576.

[32] S. Kumar, C. J. Hughes, and A. Nguyen, "Carbon: Architectural
Support for Fine-Grained Parallelism on Chip Multiprocessors," in

Proceedings of IEEE/ACM International Symposium on Computer

Architecture (ISCA), San Diego, California, June 2007.

[33] D. Sanchez, R. M. Yoo, and C. Kozyrakis, "Flexible Architectural

Support for Fine-Grain Scheduling," in Proceedings of the 15th

international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XV), March 2010.

[34] P. Evripidou, "Thread Synchronization Unit (TSU): A building
block for High Performance Computers," in Proceedings of the

International Symposium on High Performance Computing, ISHPC,

1997, pp. 107-118.

[35] N. Gupta, S.K. Mandal, J. Malave, A. Mandal, and R.N. Mahapatra,

"A Hardware Scheduler for Real Time Multiprocessor System on

Chip," in 23rd International Conference on VLSI Design (VLSID
'10), 2010, pp. 264 - 269.

[36] M. Zhou, L. H. Shang, J. Zhang, and H. H. Jin, "Adaptive Hardware

Real-Time Task Scheduler of Multi-Core ATPA Environment," in
NASA/ESA Conference on Adaptive Hardware and Systems, AHS

2009, 2009, pp. 382 - 388.

[37] D.-S. Zhang, F.-Y. Chen, H.-H. Li, S.-Y. Jin, and D.-K. Guo, "An
Energy-Efficient Scheduling Algorithm for Sporadic Real-Time

Tasks in Multiprocessor Systems," in IEEE 13th International

Conference on High Performance Computing and Communications
(HPCC), Sept. 2011, pp. 187-194.

[38] N. Bayer, "A Hardware-Synchronized/Scheduled Multiprocessor

Model," Technion – Israel Institute of Technology, Thesis, English
abstract online,

http://webee.technion.ac.il/~ran/papers/NimrodBayerMScThesisAbs

tract1989.pdf January 1989.

[39] N. Bayer and R. Ginosar, "Tightly Coupled Multiprocessing: The

Super Processor Architecture," in Q. Jin et al (eds.) "Enabling

Society with Information Technology". Tokyo: Springer, 2002, pp.
329-339, http://webee.technion.ac.il/~ran/papers/MP-Bayer-Ginos.

[40] N. Bayer and P. Aviely, "Shared Memory System for a Tightly-

Coupled Multiprocessor," US patent 8,099,561 B2, January 17,
2012.

[41] O. Green and Y. Birk, "Scheduling Directives for Shared-Memory

Many-Core Processor Systems," Electrical Engineering Dept.,
Technion, CCIT Report #803 January 2012.

