
 1

Asynchronous Design By Conversion:
Converting Synchronous Circuits into Asynchronous Ones

Alex Branover, Rakefet Kol and Ran Ginosar

VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract
A novel methodology and algorithm for the design of
large low-power asynchronous systems are described.
The system is synthesized by a commercial tool as a
synchronous circuit, and subsequently converted into an
asynchronous one. The conversion algorithm consists of
extracting input and output sets, replacing the storage
elements, identifying fork and join sets, and constructing
request and acknowledge networks. A DLAP (Doubly
Latched Asynchronous Pipeline) architecture is
employed. The resulting asynchronous circuit can adapt
its effective operating frequency to the supply voltage,
facilitating flexible and efficient power management. The
algorithm has been validated on several circuits.

1. Introduction
Asynchronous logic has been advocated as a means of

reducing power consumption in a number of situations [1-
6]. Such circuits typically switch (and consume switching
power) only when required or when their inputs change.
The power dissipated by the clock tree of a synchronous
circuit is eliminated in asynchronous ones. The clock is
replaced by local handshake signals, which typically
require less power than the clock tree. Since switching
power is proportional to the operating frequency, the
circuit dissipates less power when the required throughput
is reduced. Adaptive supply voltage can be lowered when
speed is not required. Since power depends quadratically
on voltage, the combination of slow-down and adaptive
supply yields a cubic power saving with the reduction of
speed. In addition, leakage power, which becomes more
significant in newer process technology, can also be
managed by reducing the supply voltage. It is easier to
vary supply voltage in an asynchronous circuit, since there
is no need to coordinate simultaneous variation of the
clock frequency.

Unfortunately, achieving such ambitious power savings
by asynchronous design has proven to be extremely
difficult for designers that are not experts in asynchronous
design, because the methodology for the design of large
asynchronous logic systems lags substantially behind that
of synchronous circuits. Numerous methodologies have
been developed for the design of asynchronous systems

[7, 8], and a number of special CAD tools for
asynchronous systems have been developed. However,
there is no tool or methodology for the design of large
asynchronous digital systems. The CHP synthesizer [9],
TAST [10] and Tangram [11] compile HDL specifications
into asynchronous circuits. Such circuits can achieve a
number of benefits associated with asynchronous circuits,
but they are not necessarily optimized, they require the
use of non-standard languages, and are somewhat limited
in their applicability or availability. Synthesis tools based
on signal transition graphs [12] or burst-mode
specifications [13, 14] handle small control circuits and
are inappropriate for large digital systems and data
processing circuits. A design flow for Globally
Asynchronous, Locally Synchronous (GALS) systems on
chip (SoC) based on a combination of standard VHDL or
Verilog based design of synchronous “islands” with
asynchronous “wrappers” has been presented [15] but it
implies synchronous blocks and does not support the
design of large asynchronous “islands.”

This paper proposes to employ standard commercial
logic synthesis tools to synthesize a large digital system
into a synchronous circuit, and to convert the result into a
corresponding asynchronous circuit]16[. The conversion
process replaces clocked registers by asynchronous ones
and inserts the necessary handshake signals among those
registers, without changing the combinational logic. The
asynchronous registers result in a Doubly Latched
Asynchronous Pipeline (DLAP) [17]. This process
enables an easy combination of asynchronous blocks with
synchronous ones, thus enabling mixed-timed designs and
GALS SoCs. This method can also benefit GALS SoCs in
simplifying adaptive speed modules: Whereas
synchronous modules require adjusting both clock
frequency and supply voltage in order to reduce power
consumption, converted asynchronous modules
automatically adapt their speed and only require voltage
adjustment. A somewhat different method, named de-
synchronization, has recently been developed [18].

Section 2 presents the DLAP architecture and registers.
The conversion algorithm is explained and demonstrated
in Section 3 and analyzed in Section 4.

 2

2. DLAP
Large synchronous systems are typically synthesized

into deep pipelines, employing a single synchronous clock
and edge triggered flip-flops and registers. A similar
structure, based on asynchronous registers, is termed a
Doubly-Latched Asynchronous Pipeline (DLAP). It
operates in a similar manner to its synchronous
counterpart, in the sense that all registered may be loaded
simultaneously with new data. A DLAP can employ the
same combinational logic as the synchronous pipe—an
advantage for algorithmic synchronous-to-asynchronous
conversion.

CL

control

LM LS

Ri
 Ai

control

LM LS

Ri
 Ai

Ro
 Ao

control

LM LS

Ri
 Ai

Ro
 Ao

Ro
 Ao

CL CL CL

Figure 1: Doubly-Latched Asynchronous Pipeline
(DLAP)

DLAP (Figure 1) employs a single rail bundled data
and a four-phase handshake protocol. Each stage
incorporates two storage elements that resemble the
master-slave pair of a synchronous register. If the pipeline
is balanced, DLAP operates the same as a synchronous
pipeline. At the same time, DLAP retains the benefits of
asynchronous pipelines because it is highly decoupled. A
pipeline stage that has completed early can start
processing the next data even if the following stage is still
occupied (the result of the previous computation is safely
stored in the master storage element following that stage).

DLAP can be implemented with either edge-triggered
registers or transparent latches. Transparent latches are
simpler than edge-triggered registers and nearly twice
smaller, but since master and slave latches cannot be both
open at the same time, the controller is more complex. In
this paper we consider only the transparent latch based
DLAP.

The signal transition graph (STG) specifying the latch
control and the asynchronous control circuit (as
synthesized by Petrify [19]) are shown in Figure 2 and
Figure 3, respectively. The correct behavior depends on
the timing assumptions that assure that all latch control
signal transitions are acknowledged. For instance, Dm+ is
assumed to arrive at the controller only after Lm+ has
propagated through the entire vector of latches that make
the master register. This additional safety measure is
necessary when the electrical load on signal Lm and hence
its delay are unknown in advance and can vary widely,
depending on the number of bits per register and actual
placement of the latches and routing of the Lm signal.

Lm+

Dm+ B-

Lm-

Dm-

Ai+

Ri-

Ai-

Ri+

Ls+

Ds+

B+
Ls-

Ds-

Ro+

Ao+

Ro-

Ao-G+ G-

Figure 2: DLAP latch-based controller STG

C

C

C

C C

C

Ri Ro

Ao

Lm Ls

Dm Ds

B G

Ai

Figure 3: The DLAP master-slave latch control

circuit

In addition to regular pipelines, non-linear circuits
(e.g., Figure 4) can also be implemented using DLAP,
making it the most suitable implementation model for the
conversion process.

CL CL CL

Figure 4: A non-linear circuit

3. The conversion algorithm
Typical logic synthesizers produce a synchronous

netlist, comprising combinational logic blocks separated
by clocked registers. We convert this conceptual structure
as follows. Each register is replaced by a pair of latches
and the corresponding asynchronous controller, according
to the DLAP design (Section 2). The controllers are
interconnected by request and acknowledge handshake
signals (we assume that request and acknowledge lines are
provided for the external inputs and outputs, respectively).
Matched delay lines are inserted on the request lines. The
combinational logic blocks are left unchanged. This
method, based on single rail / bundled data asynchronous
logic, is appropriate for lumped circuits where all delays
are well understood so that the timing assumptions
associated with bundled data asynchronous design can be

 3

assured. The principal advantage of this method is its
simplicity and locality (the conversion involves only local
transformation—no global redesign of the circuit is
required). For distributed systems (such as spanning wide
areas of a large SoC), other conversion methods, e.g.
based on dual-rail or 1-of-4 signaling, may be more
appropriate.

The following sub-sections describe the steps of the
conversion algorithm.

3.1. Input/Output extraction
At first the algorithm examines all registers of the

netlist and identifies all inputs to and outputs from
combinational logic blocks. For example, the synchronous
circuit shown in Figure 5 incorporates three flip-flops and
three combinational logic blocks. Inputs into
combinational blocks are listed in the inputs structure,
which combines two sets, ExternalInputs (external inputs
to the net) and FlipFlopOutputs. In Figure 5,
ExternalInputs = {I1}, FlipFlopOutputs = {I2, I3, I4},
and inputs = {I1, I2, I3, I4}. The outputs structure also
combines two sets, ExternalOutputs (O4 in Figure 5) and
FlipFlopInputs ({O1, O2, O3}). Thus, outputs = {O1, O2,
O3, O4}.

FF

FF

FFI1

O1

O2

I2

I3

O3 I4 O4

CLK

CL CLCL

Figure 5: A synchronous circuit

3.2. Register and flip-flop replacement
At this second step, the algorithm identifies all flip-

flops or registers. Each flip-flop is replaced by a DLAP
single-bit register and control logic. Only one control
logic block is required for all the bits of the same register.
Figure 6 shows the result of this step applied to the
example circuit of Figure 5.

The four handshake signals of each controller (RI, AI,
RO, AO) are interconnected to other controllers during
the steps below that construct the Request and
Acknowledge networks. But before they can be
interconnected, Fork and Join sets must be generated.

3.3. Creating the Fork and Join sets
A Fork set, containing elements of the outputs

structure, is associated with each element of the inputs
structure. Output Oi∈outputs is a member of the Fork set
of input Ik∈inputs if a directed combinational path exists

from Ik to Oi. Using the full timing graph of the original
synchronous circuit, it is straightforward to check the
existence of such combinational paths. The path is
considered existing even if delay(Ik ,Oi)= 0 . Obviously,
Fork(Ik) is the successor set of Ik.

O1

O2

O3 I4

DL

DL

DL

Cntl

 Cntl

Cntl

RI

AI AO

RO

Lm Ls

CL CLCLI1

I2

I3

O4

Figure 6: Circuit after flip-flop replacement

Similarly, a Join set is created for each element of the
outputs structure, but only elements from the inputs
structure could be included in the Join set. The indication
of the membership of some input Im in the Join set of the
output Ot is the same as for Fork set, namely a
combinational path from Im to Ot exists in the timing file.
In other words, Join(Ot) is the predecessor set of Ot. For
instance, the combinational logic circuit of Figure 7
incorporates two inputs (I1,I2) and two outputs (O1,O2),
and all the combinational paths from inputs to outputs are
marked by dashed lines. Applying the Fork/Join
definitions to this circuit, the following sets are created:
Fork(I1)={O1} ; Fork(I2) = {O1 ,O2}; Join(O1) = {I1 ,
I2}; Join(O2) = {I2}.

I1

I2

O1

O2

CL

Figure 7: A 2-input, 2-output combinational logic

block

Likewise, the Fork and Join sets of the example circuit
of Figure 5 are Fork(I1)={O1,O2}; Fork(I2)={O3};
Fork(I3)={O3}; Fork(I4)={O4}; Join(O1)={I1};
Join(O2)={I2}; Join(O3)={I2,I3}; and Join(O4)={I4}.

3.4. Constructing the Request network
This step produces all the request signals to all the

controllers, and inserts the required matched delays and
C-elements. Both Fork and Join sets created during the
previous step are used in constructing the Request
network.

The elements of the structure inputs (I1, I2, I3 and I4 in
the example of Figure 5) constitute the starting points for
all combinational paths in the circuit. Hence, a request
signal indicating valid data on Ik ∈ inputs should be sent
to the control logic of all stages whose inputs are members
of Fork(Ik). Consider the first Fork set of Figure 5,
Fork(I1)={O1,O2}. I1 is a starting point of two

 4

combinational paths, leading to O1 and O2. The
respective request lines are labeled req_I1, req_O1 and
req_O2. The combinational paths connecting I1 with O1
and O2 imply that req_I1 must be connected with req_O1
and req_O2 (Figure 8). Next, we consider the
computational delays from I1 to O1 and O2:
d11=delay(I1,O1) and d12=delay(I1,O2). The delay()
function always produces an upper bound on the
combinational delay plus a safety margin, and that value is
used as the matched delay that is inserted on the request
line, as in Figure 9. Formally:
• For each pair of (input, output) nodes (Ik, Oi), if

Oi∈Fork(Ik) then a request line is introduced
from Ik to Oi.

• A matched delay of delay(Ik,Oi) is inserted onto
the (Ik, Oi) request line.

I1 O1 req_o1

req_o2O2

req_i1
CL

Figure 8: Fork(I1)

req_i1 req_o1
d11

req_o2
d12

Figure 9: Fork(I1)—Request network with delays

The Request network in Figure 9 duplicates the delay
lines. It can be optimized as follows, resulting in reduced
area and power:

Find the shortest delay dmin among all delays on the
request lines emanating from Ik.
• Introduce a dmin delay line onto the request line

starting at req_Ik and ending at the fork node that
forks req_Ik to all its destinations.

• For each request line leading from the fork node
to a destination Oi, subtract dmin from the delay
on that request line.

Figure 10 shows the above example after optimization,
assuming that d11 < d12. A complementary process is
now applied to the Join sets. For instance, consider
Join(O3)={I2, I3}. A request line is generated for each
pair, (I2,O3) and (I3,O3), as in Figure 11. The two request
lines are combined with a C-element, which serves as an
“event AND” gate (Figure 12). Formally,

• For each pair of (input, output) nodes (Ik, Oi), if
Ik∈Join(Oi) then a request line is introduced
from Ik to Oi.

• A matched delay of delay(Ik,Oi) is inserted onto
the (Ik, Oi) request line.

• If n=||Join(Oi)|| > 1 then an n-input C-element is
employed to combine all n request lines

converging onto Oi. The output of that C-
element is req_Oi.

fork
point

req_i1
req_o1

d11

req_o2
d'12 = d12 - d11

Figure 10: Fork(I1)—Optimized Request network

I2

I3
O3CL

req_i2 req_o3
d23

req_i3
d33

req_o3
Figure 11: Fork(I2) and Fork(I3) request lines

C
req_i2

req_o3

d23

req_i3
d33

Figure 12: Fork(I2), Fork(I3) and Join(O3)

Request network

The situation with O1 and O2 is simpler because their
Join sets contain only one member, I1. In fact, a C-
element is not required in this case. Both O1 and O2 are
combinational functions of only I1 and the Request
network constructed by the Fork step (Figure 9) is
sufficient. The Request network for the (I4,O4) path is
trivial, containing neither fork nor join. The resulting
example circuit after constructing the Request network is
shown in Figure 13.

req_i2
req_i1

req_o3

- request network

O3

DL

DL

DL

Cntl

 Cntl

Lm Ls

CL CLCL

req_o1

req_i4 req_o4

req_i3req_o2

C

I3

I4 O4I1

O2

O1 I2 Cntl

Figure 13: The circuit with the Request network

3.5. Constructing the Acknowledge network
In contrast with the Request network, the construction

of the Acknowledge network is based only on the Fork
set. Input Ik∈inputs is connected by a combinational path
with each output Oi∈Fork(Ik). As we have already
noticed, Ik is an input to the combinational logic block
and at the same time it is an output of some previous stage
(or an external input). On the other hand, Oi is an output
of the combinational logic block and an input to the
following stage (or an external output). The stage where
Ik is output is permitted to issue valid data only after all
the succeeding stages have signaled their readiness to
accept it. In other words, Ik should be acknowledged by
every stage input Oi∈Fork(Ik). This implies the use of an

 5

m-input C-element per each Ik, where m=||Fork(Ik)||.
Formally, the Acknowledge network is produced as
follows:
• For each pair of (input, output) nodes (Ik, Oi), if

Oi∈Fork(Ik) then an acknowledge line is
introduced from Oi to Ik.

• If n=||Fork(Oi)|| > 1 then an n-input C-element is
employed to combine all n acknowledge lines
converging onto Ik. The output of that C-element
is ack_Ik.

I1 ack_i1

I2

I3

I4

O1

O2

O3

O4

CCL

CL

CL

ack_o2

ack_o1

ack_i2

ack_i3
ack_o3

ack_o4ack_i4

Figure 14: The Acknowledge network

The portions included in the Acknowledge network of
our original circuit are shown in Figure 14, and Figure 15
shows the complete circuit after all acknowledge lines are
inserted.

acknowledge network

req_i2
req_i1

req_o3

- request network

O3

DL

DL

DL

Cntl

 Cntl

Lm Ls

CL CLCL

req_o1

req_i4 req_o4

req_i3req_o2

I3

I4 O4I1

O2

O1 I2 Cntl

-

CC
ack_o4ack_i4ack_o3

ack_i2

ack_i3ack_o2

ack_o1

ack_i1

Figure 15: The final converted circuit

3.6. Bus processing
Bundled multi-bit data buses are treated somewhat

differently than the foregoing steps, which are related to
single flip-flops. Consider the n-bit buses O[n], I[n] of the
synchronous circuit in Figure 16.

In the converted circuit (Figure 17), the asynchronous
register contains 2n latches (a master and a slave for each
bit) and a single controller, producing a single Lm and a
single Ls latch-enable signals for the entire register. The
single request line req_o’ signals validity of all m bits of
the O’ bus. The matched delay d’ accounts for the worst
case delay over the combinational logic over all n bits of
the O[n] bus. Consequently, req_o implies validity of the
entire O[n] bus:

d’=max(delay(O’[i], O[j])
{ i=l...m, j=1...n, where the (O’[i], O[j]) path exists }

FF
O[n] I [n]1

2
n

O’[m] I’[k]

CLOCK

CL CL

Figure 16: A synchronous n-bit bus

DL
1

2
n

O[n]O’[n] I [n] I’[n]

cntl
logic

req_o’ req_o req_i req_i'

ack_o ack_o

d’ d’’

CLCL

Lm Ls

Figure 17: A converted asynchronous n-bit bus

This approach is independent of the nature of the
combinational logic and saves on hardware, but it requires
a search of maximal delay and results in worst-case
delays.

4. Analysis
Two of the algorithm steps, the creation of Fork and

Join sets and the construction of Request and
Acknowledge networks, incur O(K2) time complexity,
where K is the maximum of the number of external
outputs, the number of external inputs, and the number of
flip-flops, rendering the entire algorithm asymptotically
quadratic in execution time.

A number of synchronous circuit examples,
incorporating a variety of flip-flops and combinational
elements, have been synthesized using Synopsys and the
converted into asynchronous circuits (Table 1). Control
logic for double-latches required 23 gates in this design
and constituted the principal contribution to increasing the
circuit area. The circuits that contained many single flip-
flops (rather than buses) where each flip-flop is replaced
by a double-latch plus control logic incurred a larger
increase than circuits with buses.

Area overhead diminishes as the original synchronous
circuit grows (Figure 18). In our larger circuits, where the
area overhead contributed by DLAP control logic and
delay lines was about 26% of the combinational logic
area, the clock network that was eliminated in the process
of conversion had occupied approximately 10% of the
original circuit area. As a result, the converted
asynchronous circuit was about 16% larger than the
original synchronous one.

5. Conclusions
Synchronous-to-asynchronous conversion enables

easier transition to asynchronous design and at the same
time retains investment in existing synchronous tools and
methodologies. In addition it enables asynchronous
interface to other asynchronous and synchronous modules

 6

(mixed timing). Asynchronous low power techniques,
(such as variable power supply) can be adopted for the
generated asynchronous structure. Reducing the supply
voltage is extremely effective in saving switching power
whenever the circuit can be operated at a slower speed,
and it is also useful for mitigating power loss due to
leakage. The main cost of asynchronous conversion is
area increase, becoming relatively smaller for larger
circuits.

Table 1: Example of Circuit Conversions

Ckt Function

Gates
in

Sync
Ckt

Added
Control
Logic
Units

Added
Delay
Gates

Added
Gates in
Async

Ckt

Total
Gates

in
Async

Ckt

Area
Growth

N1 Test
Circuit 18 1 14 37 55 206%

N2 Test
Circuit 32 2 10 56 88 175%

N3 Error
Detector 113 5 32 147 260 130%

N4
Traffic
Light

Controller
64 1 48 71 135 111%

N5 Data Path 780 7 74 210 990 27%
N6 FIR Filter 1148 10 93 293 1441 26%

Area Growth as a Function of Circuit Size

0%

50%

100%

150%

200%

250%

0 200 400 600 800 1000 1200

Number of Gates in Sync Version

A
re

a
G

ro
w

th
 in

 A
sy

nc

Ve
rs

io
n

Figure 18: Area Growth. Converted circuits

eliminate the clock tree, but require additional
area for control and delay buffers.

The sync-to-async conversion algorithm has been
presented. Run-time complexity is quadratic in the size of
the input. The algorithm was implemented as a CAD tool
and tested and proven on different circuits. DLAP
(doubly-latched asynchronous pipeline), which imitates
synchronous pipes, is used as a target structure of the
conversion algorithm. The method exploits an existing
trusted synchronous synthesizer (Synopsys).

Further research may be targeted at improving run-time
complexity by taking advantage of the synthesizer’s
internal timing data. The algorithm may also be extended
to handle high-performance dynamic logic (domino, self-
reset domino) and non-pipelined structures (memories,

caches). Converting into other types of asynchronous
circuits, such as micropipelines or quasi-delay-insensitive
circuits, may also be addressed by future research.

References
[1] Berkel et al., “Asynchronous Circuits for Low Power,”

IEEE Design & Test of Computers, 11, 22-32, 1994.
[2] Nielsen et al., “Low-power operation,” IEEE Trans. VLSI,

2, 391-397, 1994.
[3] Piguet, “Low-power and low-voltage CMOS digital

design,” Microelect. Eng., 39, 179—208, 1997.
[4] Berkel et al., “Asynchronous Does Not Imply Low Power,

But ...” Low Power CMOS Design, Chandrakasan and
Brodersen (ed), 227—232, 1998.

[5] Martin, “Remarks on low-power advantages of
asynchronous circuits,” ESSCIRC, 1998.

[6] Kessels and Peeters, “The Tangram Framework,” ASP-
DAC, 255—260, 2001.

[7] Hauck, “Asynchronous Design Methodologies,” Proc.
IEEE, 83, 69—93, 1995.

[8] Nowick et al., “Asynchronous Circuits and Systems,”
Proc. IEEE, 87, 219—222, 1999.

[9] Martin, “Programming in VLSI,” Concurrency and
Communication, Hoare (ed), 1—64, 1990.

[10] Renaudin et al., “A Design Framework for
Asynchronous/Synchronous Circuits Based on CHP to
HDL Translation,” ASYNC, 135—144, 1999.

[11] Berkel et al., “VLSI Programming and Silicon
Compilation,” ICCD, 150—166, 1988.

[12] Cortadella et al., “Designing Asynchronous Circuits from
Behavioral Specifications with Internal Conflicts,”
ASYNC, 106—115, 1994.

[13] Yun and Dill, “Automatic Synthesis of 3D Asynchronous
State Machines,” ICCAD, 576—580, 1992.

[14] Fuhrer et al., “Minimalist,” Columbia University, 1999.
[15] Oetiker et al., “Design Flow for a 3-Million Transistor

GALS Test Chip,” ACiD Workshop, 2003.
[16] Kol, Ginosar and Samuel, “Statechart Methodology for

Asynchronous Systems,” ASYNC, 1996.
[17] Kol and Ginosar, “A Doubly-Latched Asynchronous

Pipeline,” ICCD, 706—711, 1997.
[18] Cortadella et al., “A Concurrent Model for De-

Synchronization,” IWLS, 2003.
[19] Cortadella et al., “Petrify,” IEICE Trans. Information and

Systems, E80-D, 315—325, 1997.

